Mercurial > hg > index.cgi
view lwasm/pass4.c @ 273:1409debcb1a0
Fix crash on listing when nested noexpand macros are used
Macros flagged noexpand were causing a segfault during listing. The problem
was incorrect accounting for nesting levels for noexpand macros causing the
listing handler to fall off the end of the program in certain circumstances
and in other circumstances it would fail to suppress expansion. Both the
segfault in the case of misbehaviour and the misbhaviour itself are
corrected with this update.
If you do not use nested noexpand macros, this bug has no effect.
author | William Astle <lost@l-w.ca> |
---|---|
date | Sat, 25 May 2013 13:35:46 -0600 |
parents | 8beb109dfd69 |
children | 8764142b3192 |
line wrap: on
line source
/* pass4.c Copyright © 2010 William Astle This file is part of LWTOOLS. LWTOOLS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdio.h> #include <string.h> #include <lw_alloc.h> #include <lw_string.h> #include "lwasm.h" #include "instab.h" /* Resolve2 Pass Force resolution of instruction sizes. */ void do_pass4_aux(asmstate_t *as, int force) { int rc; int cnt; line_t *cl, *sl; struct line_expr_s *le; int trycount = 0; // first, count the number of unresolved instructions for (cnt = 0, cl = as -> line_head; cl; cl = cl -> next) { if (cl -> len == -1) cnt++; } sl = as -> line_head; while (cnt > 0) { trycount = cnt; debug_message(as, 60, "%d unresolved instructions", cnt); // find an unresolved instruction for ( ; sl && sl -> len != -1; sl = sl -> next) { debug_message(as, 200, "Search line %p", sl); as -> cl = sl; lwasm_reduce_expr(as, sl -> addr); lwasm_reduce_expr(as, sl -> daddr); // simplify each expression for (le = sl -> exprs; le; le = le -> next) lwasm_reduce_expr(as, le -> expr); } debug_message(as, 200, "Found line %p", sl); // simplify address as -> cl = sl; lwasm_reduce_expr(as, sl -> addr); lwasm_reduce_expr(as, sl -> daddr); // simplify each expression for (le = sl -> exprs; le; le = le -> next) lwasm_reduce_expr(as, le -> expr); if (sl -> len == -1 && sl -> insn >= 0 && instab[sl -> insn].resolve) { (instab[sl -> insn].resolve)(as, sl, 1); debug_message(as, 200, "Try resolve = %d/%d", sl -> len, sl -> dlen); if (force && sl -> len == -1 && sl -> dlen == -1) { lwasm_register_error(as, sl, "Instruction failed to resolve."); return; } } if (sl -> len != -1 && sl -> dlen != -1) { cnt--; if (cnt == 0) return; // this one resolved - try looking for the next one instead // of wasting time running through the rest of the lines continue; } do { debug_message(as, 200, "Flatten after..."); rc = 0; for (cl = sl; cl; cl = cl -> next) { debug_message(as, 200, "Flatten line %p", cl); as -> cl = cl; // simplify address lwasm_reduce_expr(as, cl -> addr); lwasm_reduce_expr(as, cl -> daddr); // simplify each expression for (le = cl -> exprs; le; le = le -> next) lwasm_reduce_expr(as, le -> expr); if (cl -> len == -1) { // try resolving the instruction length // but don't force resolution if (cl -> insn >= 0 && instab[cl -> insn].resolve) { (instab[cl -> insn].resolve)(as, cl, 0); if ((cl -> inmod == 0) && cl -> len >= 0 && cl -> dlen >= 0) { if (cl -> len == 0) cl -> len = cl -> dlen; else cl -> dlen = cl -> len; } debug_message(as, 200, "Flatten resolve returns %d", cl -> len); if (cl -> len != -1 && cl -> dlen != -1) { rc++; cnt--; if (cnt == 0) return; } } } } if (as -> errorcount > 0) return; } while (rc > 0); if (trycount == cnt) break; } } void do_pass4(asmstate_t *as) { do_pass4_aux(as, 1); }