Mercurial > hg > index.cgi
view lwasm/insn_indexed.c @ 576:40edb7de3857
Add 0b and 0B as a prefix for binary constants
author | William Astle <lost@l-w.ca> |
---|---|
date | Fri, 12 Jul 2024 23:02:57 -0600 |
parents | 62720ac9e28d |
children |
line wrap: on
line source
/* insn_indexed.c Copyright © 2009 William Astle This file is part of LWASM. LWASM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* for handling indexed mode instructions */ #include <ctype.h> #include <string.h> #include <lw_expr.h> #include "lwasm.h" #include "instab.h" /* l -> lint: size of operand (0, 1, 2, -1 if not determined) l -> pb: actual post byte (from "resolve" stage) or info passed forward to the resolve stage (if l -> line is -1); 0x80 is indir bits 0-2 are register number */ void insn_parse_indexed_aux(asmstate_t *as, line_t *l, char **p) { static const char *regs9 = "X Y U S PCRPC "; static const char *regs = "X Y U S W PCRPC "; int i, rn; int indir = 0; int f0 = 0; const char *reglist; lw_expr_t e; char *tstr; if (CURPRAGMA(l, PRAGMA_6809)) { reglist = regs9; } else { reglist = regs; } // is it indirect? if (**p == '[') { indir = 1; (*p)++; } lwasm_skip_to_next_token(l, p); if (**p == ',') { int incdec = 0; /* we have a pre-dec, post-inc, or no offset mode here */ (*p)++; lwasm_skip_to_next_token(l, p); if (**p == '-') { incdec = -1; (*p)++; if (**p == '-') { incdec = -2; (*p)++; } lwasm_skip_to_next_token(l, p); } /* allowed registers: X, Y, U, S, or W (6309) */ switch (**p) { case 'x': case 'X': rn = 0; break; case 'y': case 'Y': rn = 1; break; case 'u': case 'U': rn = 2; break; case 's': case 'S': rn = 3; break; case 'w': case 'W': if (CURPRAGMA(l, PRAGMA_6809)) { lwasm_register_error(as, l, E_OPERAND_BAD); return; } rn = 4; break; default: lwasm_register_error(as, l, E_OPERAND_BAD); return; } (*p)++; lwasm_skip_to_next_token(l, p); if (**p == '+') { if (incdec != 0) { lwasm_register_error(as, l, E_OPERAND_BAD); return; } incdec = 1; (*p)++; if (**p == '+') { incdec = 2; (*p)++; } lwasm_skip_to_next_token(l, p); } if (indir) { if (**p != ']') { lwasm_register_error(as, l, E_OPERAND_BAD); return; } (*p)++; } if (indir || rn == 4) { if (incdec == 1 || incdec == -1) { lwasm_register_error(as, l, E_OPERAND_BAD); return; } } if (rn == 4) { if (indir) { if (incdec == 0) i = 0x90; else if (incdec == -2) i = 0xF0; else i = 0xD0; } else { if (incdec == 0) i = 0x8F; else if (incdec == -2) i = 0xEF; else i = 0xCF; } } else { switch (incdec) { case 0: i = 0x84; break; case 1: i = 0x80; break; case 2: i = 0x81; break; case -1: i = 0x82; break; case -2: i = 0x83; break; } i = (rn << 5) | i | (indir << 4); } l -> pb = i; l -> lint = 0; return; } i = toupper(**p); if ( (i == 'A' || i == 'B' || i == 'D') || (!CURPRAGMA(l, PRAGMA_6809) && (i == 'E' || i == 'F' || i == 'W')) ) { tstr = *p + 1; lwasm_skip_to_next_token(l, &tstr); if (*tstr == ',') { *p = tstr + 1; lwasm_skip_to_next_token(l, p); switch (**p) { case 'x': case 'X': rn = 0; break; case 'y': case 'Y': rn = 1; break; case 'u': case 'U': rn = 2; break; case 's': case 'S': rn = 3; break; default: lwasm_register_error(as, l, E_OPERAND_BAD); return; } (*p)++; lwasm_skip_to_next_token(l, p); if (indir) { if (**p != ']') { lwasm_register_error(as, l, E_OPERAND_BAD); return; } (*p)++; } switch (i) { case 'A': i = 0x86; break; case 'B': i = 0x85; break; case 'D': i = 0x8B; break; case 'E': i = 0x87; break; case 'F': i = 0x8A; break; case 'W': i = 0x8E; break; } l -> pb = i | (indir << 4) | (rn << 5); l -> lint = 0; return; } } /* we have the "expression" types now */ if (**p == '<') { l -> lint = 1; (*p)++; if (**p == '<') { l -> lint = 3; (*p)++; if (indir) { lwasm_register_error(as, l, E_ILL5); return; } } } else if (**p == '>') { l -> lint = 2; (*p)++; } lwasm_skip_to_next_token(l, p); if (**p == '0') { tstr = *p + 1; lwasm_skip_to_next_token(l, &tstr); if (*tstr == ',') { f0 = 1; } } // now we have to evaluate the expression e = lwasm_parse_expr(as, p); if (!e) { lwasm_register_error(as, l, E_OPERAND_BAD); return; } lwasm_save_expr(l, 0, e); if (**p != ',') { /* if no comma, we have extended indirect */ if (l -> lint == 1 || **p != ']') { lwasm_register_error(as, l, E_OPERAND_BAD); return; } (*p)++; l -> lint = 2; l -> pb = 0x9F; return; } (*p)++; lwasm_skip_to_next_token(l, p); // now get the register rn = lwasm_lookupreg3(reglist, p); if (rn < 0) { lwasm_register_error(as, l, E_REGISTER_BAD); return; } if (indir) { if (**p != ']') { lwasm_register_error(as, l, E_OPERAND_BAD); return; } else (*p)++; } if (rn <= 3) { // X,Y,U,S if (l -> lint == 1) { l -> pb = 0x88 | (rn << 5) | (indir ? 0x10 : 0); return; } else if (l -> lint == 2) { l -> pb = 0x89 | (rn << 5) | (indir ? 0x10 : 0); return; } else if (l -> lint == 3) { l -> pb = (rn << 5); } } // nnnn,W is only 16 bit (or 0 bit) if (rn == 4) { if (l -> lint == 1) { lwasm_register_error(as, l, E_NW_8); return; } else if (l -> lint == 3) { lwasm_register_error(as, l, E_ILL5); return; } if (l -> lint == 2) { l -> pb = indir ? 0xb0 : 0xaf; l -> lint = 2; return; } l -> pb = (0x80 * indir) | rn; /* [,w] and ,w if (indir) *b1 = 0x90; else *b1 = 0x8f; */ return; } // PCR? then we have PC relative addressing (like B??, LB??) if (rn == 5 || (rn == 6 && CURPRAGMA(l, PRAGMA_PCASPCR))) { lw_expr_t e1, e2; // external references are handled exactly the same as for // relative addressing modes // on pass 1, adjust the expression for a subtraction of the // current address // e - (addr + linelen) => e - addr - linelen e2 = lw_expr_build(lw_expr_type_special, lwasm_expr_linelen, l); e1 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e, e2); lw_expr_destroy(e2); e2 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e1, l -> addr); lw_expr_destroy(e1); lwasm_save_expr(l, 0, e2); if (l -> lint == 1) { l -> pb = indir ? 0x9C : 0x8C; return; } else if (l -> lint == 2) { l -> pb = indir ? 0x9D : 0x8D; return; } else if (l -> lint == 3) { lwasm_register_error(as, l, E_ILL5); return; } } if (rn == 6) { if (l -> lint == 1) { l -> pb = indir ? 0x9C : 0x8C; return; } else if (l -> lint == 2) { l -> pb = indir ? 0x9D : 0x8D; return; } else if (l -> lint == 3) { lwasm_register_error(as, l, E_ILL5); return; } } if (l -> lint != 3) l -> pb = (indir * 0x80) | rn | (f0 * 0x40); } PARSEFUNC(insn_parse_indexed) { l -> lint = -1; insn_parse_indexed_aux(as, l, p); if (l -> lint != -1) { if (l -> lint == 3) l -> len = OPLEN(instab[l -> insn].ops[0]) + 1; else l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1; } } void insn_resolve_indexed_aux(asmstate_t *as, line_t *l, int force, int elen) { // here, we have an expression which needs to be // resolved; the post byte is determined here as well lw_expr_t e, e2; int pb = -1; int v; if (l -> len != -1) return; e = lwasm_fetch_expr(l, 0); if (!lw_expr_istype(e, lw_expr_type_int)) { // temporarily set the instruction length to see if we get a // constant for our expression; if so, we can select an instruction // size e2 = lw_expr_copy(e); // magic 2 for 8 bit (post byte + offset) l -> len = OPLEN(instab[l -> insn].ops[0]) + elen + 2; lwasm_reduce_expr(as, e2); // l -> len += 1; // e3 = lw_expr_copy(e); // lwasm_reduce_expr(as, e3); l -> len = -1; if (lw_expr_istype(e2, lw_expr_type_int)) { v = lw_expr_intval(e2); // we have a reducible expression here which depends on // the size of this instruction if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4) { if ((l -> pb & 0x07) < 4) { pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); } else { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; } l -> pb = pb; lw_expr_destroy(e2); l -> lint = 0; return; } else if (v < -128 || v > 127) { l -> lint = 2; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x89 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9D : 0x8D; break; } l -> pb = pb; lw_expr_destroy(e2); // lw_expr_destroy(e3); return; } else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15) { // if not a 5 bit value, is indirect, or is not X,Y,U,S l -> lint = 1; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x88 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W // use 16 bit because W doesn't have 8 bit, unless 0 if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; l -> lint = 0; } else { pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; l -> lint = 2; } break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9C : 0x8C; break; } l -> pb = pb; lw_expr_destroy(e2); return; } else { // we have X,Y,U,S and a possible 5 bit here l -> lint = 0; if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x03) << 5 | 0x84; } else { pb = ((l -> pb & 0x03) << 5) | (v & 0x1F); } l -> pb = pb; lw_expr_destroy(e2); return; } } else { if ((l -> pb & 0x07) == 5 || (l -> pb & 0x07) == 6) { // NOTE: this will break in some particularly obscure corner cases // which are not likely to show up in normal code. Notably, if, for // some reason, the target gets *farther* away if shorter addressing // modes are chosen, which should only happen if the symbol is before // the instruction in the source file and there is some sort of ORG // statement or similar in between which forces the address of this // instruction, and the differences happen to cross the 8 bit boundary. // For this reason, we use a heuristic and allow a margin on the 8 // bit boundary conditions. v = as -> pretendmax; as -> pretendmax = 1; lwasm_reduce_expr(as, e2); as -> pretendmax = v; if (lw_expr_istype(e2, lw_expr_type_int)) { v = lw_expr_intval(e2); // Actual range is -128 <= offset <= 127; we're allowing a fudge // factor of 25 or so bytes so that we're less likely to accidentally // cross into the 16 bit boundary in weird corner cases. if (v >= -100 && v <= 100) { l -> lint = 1; l -> pb = (l -> pb & 0x80) ? 0x9C : 0x8C; return; } } } } lw_expr_destroy(e2); } if (lw_expr_istype(e, lw_expr_type_int)) { // we know how big it is v = lw_expr_intval(e); if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4 && ((l -> pb & 0x40) == 0)) { if ((l -> pb & 0x07) < 4) { pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); } else { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; } l -> pb = pb; l -> lint = 0; return; } else if (v < -128 || v > 127) { do16bit: l -> lint = 2; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x89 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9D : 0x8D; break; } l -> pb = pb; return; } else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15) { // if not a 5 bit value, is indirect, or is not X,Y,U,S l -> lint = 1; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x88 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W // use 16 bit because W doesn't have 8 bit, unless 0 if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; l -> lint = 0; } else { pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; l -> lint = 2; } break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9C : 0x8C; break; } l -> pb = pb; return; } else { // we have X,Y,U,S and a possible 5 bit here l -> lint = 0; if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x03) << 5 | 0x84; } else { pb = ((l -> pb & 0x03) << 5) | (v & 0x1F); } l -> pb = pb; return; } } else { // we don't know how big it is if (!force) return; // force 16 bit if we don't know l -> lint = 2; goto do16bit; } } RESOLVEFUNC(insn_resolve_indexed) { if (l -> lint == -1) insn_resolve_indexed_aux(as, l, force, 0); if (l -> lint != -1 && l -> pb != -1) { if (l -> lint == 3) l -> len = OPLEN(instab[l -> insn].ops[0]) + 1; else l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1; } } void insn_emit_indexed_aux(asmstate_t *as, line_t *l) { lw_expr_t e; if (l -> lint == 1) { int i; e = lwasm_fetch_expr(l, 0); i = lw_expr_intval(e); if (i < -128 || i > 127) { lwasm_register_error(as, l, E_BYTE_OVERFLOW); } } // exclude expr,W since that can only be 16 bits if (l -> lint == 3) { int offs; e = lwasm_fetch_expr(l, 0); if (lw_expr_istype(e, lw_expr_type_int)) { offs = lw_expr_intval(e); if ((offs >= -16 && offs <= 15) || offs >= 0xFFF0) { l -> pb |= offs & 0x1f; l -> lint = 0; } else { lwasm_register_error(as, l, E_BYTE_OVERFLOW); } } else { lwasm_register_error(as, l, E_EXPRESSION_NOT_RESOLVED); } } // note that extended indirect (post byte 0x9f) can only be 16 bits else if (l -> lint == 2 && CURPRAGMA(l, PRAGMA_OPERANDSIZE) && (l -> pb != 0xAF && l -> pb != 0xB0 && l -> pb != 0x9f)) { int offs; e = lwasm_fetch_expr(l, 0); if (lw_expr_istype(e, lw_expr_type_int)) { offs = lw_expr_intval(e); if ((offs >= -128 && offs <= 127) || offs >= 0xFF80) { lwasm_register_error(as, l, W_OPERAND_SIZE); } } } lwasm_emitop(l, instab[l -> insn].ops[0]); lwasm_emitop(l, l -> pb); l -> cycle_adj = lwasm_cycle_calc_ind(l); if (l -> lint > 0) { e = lwasm_fetch_expr(l, 0); lwasm_emitexpr(l, e, l -> lint); } } EMITFUNC(insn_emit_indexed) { insn_emit_indexed_aux(as, l); }