Mercurial > hg > index.cgi
view lwasm/insn_indexed.c @ 109:6a919c3ca0e9
Fixed pragma noindex0tonone to work
author | lost@l-w.ca |
---|---|
date | Sun, 07 Aug 2011 10:23:14 -0600 |
parents | 95181f1ad183 |
children | 5706712f8a20 |
line wrap: on
line source
/* insn_indexed.c Copyright © 2009 William Astle This file is part of LWASM. LWASM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* for handling indexed mode instructions */ #include <ctype.h> #include <string.h> #include <lw_expr.h> #include "lwasm.h" #include "instab.h" /* l -> lint: size of operand (0, 1, 2, -1 if not determined) l -> pb: actual post byte (from "resolve" stage) or info passed forward to the resolve stage (if l -> line is -1); 0x80 is indir bits 0-2 are register number */ void insn_parse_indexed_aux(asmstate_t *as, line_t *l, char **p) { struct opvals { char *opstr; int pb; }; static const char *regs = "X Y U S W PCRPC "; static const struct opvals simpleindex[] = { {",x", 0x84}, {",y", 0xa4}, {",u", 0xc4}, {",s", 0xe4}, {",x+", 0x80}, {",y+", 0xa0}, {",u+", 0xc0}, {",s+", 0xe0}, {",x++", 0x81}, {",y++", 0xa1}, {",u++", 0xc1}, {",s++", 0xe1}, {",-x", 0x82}, {",-y", 0xa2}, {",-u", 0xc2}, {",-s", 0xe2}, {",--x", 0x83}, {",--y", 0xa3}, {",--u", 0xc3}, {",--s", 0xe3}, {"a,x", 0x86}, {"a,y", 0xa6}, {"a,u", 0xc6}, {"a,s", 0xe6}, {"b,x", 0x85}, {"b,y", 0xa5}, {"b,u", 0xc5}, {"b,s", 0xe5}, {"e,x", 0x87}, {"e,y", 0xa7}, {"e,u", 0xc7}, {"e,s", 0xe7}, {"f,x", 0x8a}, {"f,y", 0xaa}, {"f,u", 0xca}, {"f,s", 0xea}, {"d,x", 0x8b}, {"d,y", 0xab}, {"d,u", 0xcb}, {"d,s", 0xed}, {"w,x", 0x8e}, {"w,y", 0xae}, {"w,u", 0xce}, {"w,s", 0xee}, {",w", 0x8f}, {",w++", 0xcf}, {",--w", 0xef}, {"[,x]", 0x94}, {"[,y]", 0xb4}, {"[,u]", 0xd4}, {"[,s]", 0xf4}, {"[,x++]", 0x91}, {"[,y++]", 0xb1}, {"[,u++]", 0xd1}, {"[,s++]", 0xf1}, {"[,--x]", 0x93}, {"[,--y]", 0xb3}, {"[,--u]", 0xd3}, {"[,--s]", 0xf3}, {"[a,x]", 0x96}, {"[a,y]", 0xb6}, {"[a,u]", 0xd6}, {"[a,s]", 0xf6}, {"[b,x]", 0x95}, {"[b,y]", 0xb5}, {"[b,u]", 0xd5}, {"[b,s]", 0xf5}, {"[e,x]", 0x97}, {"[e,y]", 0xb7}, {"[e,u]", 0xd7}, {"[e,s]", 0xf7}, {"[f,x]", 0x9a}, {"[f,y]", 0xba}, {"[f,u]", 0xda}, {"[f,s]", 0xfa}, {"[d,x]", 0x9b}, {"[d,y]", 0xbb}, {"[d,u]", 0xdb}, {"[d,s]", 0xfd}, {"[w,x]", 0x9e}, {"[w,y]", 0xbe}, {"[w,u]", 0xde}, {"[w,s]", 0xfe}, {"[,w]", 0x90}, {"[,w++]", 0xd0}, {"[,--w]", 0xf0}, { "", -1 } }; static const char *regs9 = "X Y U S PCRPC "; static const struct opvals simpleindex9[] = { {",x", 0x84}, {",y", 0xa4}, {",u", 0xc4}, {",s", 0xe4}, {",x+", 0x80}, {",y+", 0xa0}, {",u+", 0xc0}, {",s+", 0xe0}, {",x++", 0x81}, {",y++", 0xa1}, {",u++", 0xc1}, {",s++", 0xe1}, {",-x", 0x82}, {",-y", 0xa2}, {",-u", 0xc2}, {",-s", 0xe2}, {",--x", 0x83}, {",--y", 0xa3}, {",--u", 0xc3}, {",--s", 0xe3}, {"a,x", 0x86}, {"a,y", 0xa6}, {"a,u", 0xc6}, {"a,s", 0xe6}, {"b,x", 0x85}, {"b,y", 0xa5}, {"b,u", 0xc5}, {"b,s", 0xe5}, {"d,x", 0x8b}, {"d,y", 0xab}, {"d,u", 0xcb}, {"d,s", 0xed}, {"[,x]", 0x94}, {"[,y]", 0xb4}, {"[,u", 0xd4}, {"[,s]", 0xf4}, {"[,x++]", 0x91}, {"[,y++]", 0xb1}, {"[,u++]", 0xd1}, {"[,s++]", 0xf1}, {"[,--x]", 0x93}, {"[,--y]", 0xb3}, {"[,--u]", 0xd3}, {"[,--s]", 0xf3}, {"[a,x]", 0x96}, {"[a,y]", 0xb6}, {"[a,u]", 0xd6}, {"[a,s]", 0xf6}, {"[b,x]", 0x95}, {"[b,y]", 0xb5}, {"[b,u]", 0xd5}, {"[b,s]", 0xf5}, {"[d,x]", 0x9b}, {"[d,y]", 0xbb}, {"[d,u]", 0xdb}, {"[d,s]", 0xfd}, { "", -1 } }; char stbuf[25]; int i, j, rn; int indir = 0; int f0 = 1; const struct opvals *simples; const char *reglist; lw_expr_t e; if (as -> target == TARGET_6809) { simples = simpleindex9; reglist = regs9; } else { simples = simpleindex; reglist = regs; } // fetch out operand for lookup for (i = 0; i < 24; i++) { if (*((*p) + i) && !isspace(*((*p) + i))) stbuf[i] = *((*p) + i); else break; } stbuf[i] = '\0'; // now look up operand in "simple" table if (!*((*p) + i) || isspace(*((*p) + i))) { // do simple lookup for (j = 0; simples[j].opstr[0]; j++) { if (!strcasecmp(stbuf, simples[j].opstr)) break; } if (simples[j].opstr[0]) { l -> pb = simples[j].pb; l -> lint = 0; (*p) += i; return; } } // now do the "hard" ones // is it indirect? if (**p == '[') { indir = 1; (*p)++; } // look for a "," - all indexed modes have a "," except extended indir rn = 0; for (i = 0; (*p)[i] && !isspace((*p)[i]); i++) { if ((*p)[i] == ',') { rn = 1; break; } } // if no "," and indirect, do extended indir if (!rn && indir) { // extended indir l -> pb = 0x9f; e = lwasm_parse_expr(as, p); if (!e || **p != ']') { lwasm_register_error(as, l, "Bad operand"); return; } lwasm_save_expr(l, 0, e); (*p)++; l -> lint = 2; return; } if (**p == '<') { l -> lint = 1; (*p)++; } else if (**p == '>') { l -> lint = 2; (*p)++; } if (**p == '0' && *(*p+1) == ',') { f0 = 1; } // now we have to evaluate the expression e = lwasm_parse_expr(as, p); if (!e) { lwasm_register_error(as, l, "Bad operand"); return; } lwasm_save_expr(l, 0, e); // now look for a comma; if not present, explode if (*(*p)++ != ',') { lwasm_register_error(as, l, "Bad operand"); return; } // now get the register rn = lwasm_lookupreg3(reglist, p); if (rn < 0) { lwasm_register_error(as, l, "Bad register"); return; } if (indir) { if (**p != ']') { lwasm_register_error(as, l, "Bad operand"); return; } else (*p)++; } // nnnn,W is only 16 bit (or 0 bit) if (rn == 4) { if (l -> lint == 1) { lwasm_register_error(as, l, "n,W cannot be 8 bit"); return; } if (l -> lint == 2) { l -> pb = indir ? 0xb0 : 0xcf; l -> lint = 2; return; } l -> pb = (0x80 * indir) | rn; /* [,w] and ,w if (indir) *b1 = 0x90; else *b1 = 0x8f; */ return; } // PCR? then we have PC relative addressing (like B??, LB??) if (rn == 5 || (rn == 6 && CURPRAGMA(l, PRAGMA_PCASPCR))) { lw_expr_t e1, e2; // external references are handled exactly the same as for // relative addressing modes // on pass 1, adjust the expression for a subtraction of the // current address // e - (addr + linelen) => e - addr - linelen e2 = lw_expr_build(lw_expr_type_special, lwasm_expr_linelen, l); e1 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e, e2); lw_expr_destroy(e2); e2 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e1, l -> addr); lw_expr_destroy(e1); lwasm_save_expr(l, 0, e2); if (l -> lint == 1) { l -> pb = indir ? 0x9C : 0x8C; return; } if (l -> lint == 2) { l -> pb = indir ? 0x9D : 0x8D; return; } } if (rn == 6) { if (l -> lint == 1) { l -> pb = indir ? 0x9C : 0x8C; return; } if (l -> lint == 2) { l -> pb = indir ? 0x9D : 0x8D; return; } } l -> pb = (indir * 0x80) | rn | (f0 * 0x40); } PARSEFUNC(insn_parse_indexed) { l -> lint = -1; insn_parse_indexed_aux(as, l, p); if (l -> lint != -1) { l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1; } } void insn_resolve_indexed_aux(asmstate_t *as, line_t *l, int force, int elen) { // here, we have an expression which needs to be // resolved; the post byte is determined here as well lw_expr_t e, e2; int pb = -1; int v; if (l -> len != -1) return; e = lwasm_fetch_expr(l, 0); if (!lw_expr_istype(e, lw_expr_type_int)) { // temporarily set the instruction length to see if we get a // constant for our expression; if so, we can select an instruction // size e2 = lw_expr_copy(e); // magic 2 for 8 bit (post byte + offset) l -> len = OPLEN(instab[l -> insn].ops[0]) + elen + 2; lwasm_reduce_expr(as, e2); // l -> len += 1; // e3 = lw_expr_copy(e); // lwasm_reduce_expr(as, e3); l -> len = -1; if (lw_expr_istype(e2, lw_expr_type_int)) { v = lw_expr_intval(e2); // we have a reducible expression here which depends on // the size of this instruction if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4) { if ((l -> pb & 0x07) < 4) { pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); } else { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; } l -> pb = pb; lw_expr_destroy(e2); l -> lint = 0; return; } else if (v < -128 || v > 127) { l -> lint = 2; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x89 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W pb = (l -> pb & 0x80) ? 0xD0 : 0xCF; break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9D : 0x8D; break; } l -> pb = pb; lw_expr_destroy(e2); // lw_expr_destroy(e3); return; } else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15) { // if not a 5 bit value, is indirect, or is not X,Y,U,S l -> lint = 1; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x88 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W // use 16 bit because W doesn't have 8 bit, unless 0 if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; l -> lint = 0; } else { pb = (l -> pb & 0x80) ? 0xD0 : 0xCF; l -> lint = 2; } break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9C : 0x8C; break; } l -> pb = pb; lw_expr_destroy(e2); return; } else { // we have X,Y,U,S and a possible 16 bit here l -> lint = 0; if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x03) << 5 | 0x84; } else { pb = (l -> pb & 0x03) << 5 | (v & 0x1F); } l -> pb = pb; lw_expr_destroy(e2); return; } } lw_expr_destroy(e2); } if (lw_expr_istype(e, lw_expr_type_int)) { // we know how big it is v = lw_expr_intval(e); if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4) { if ((l -> pb & 0x07) < 4) { pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); } else { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; } l -> pb = pb; l -> lint = 0; return; } else if (v < -128 || v > 127) { do16bit: l -> lint = 2; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x89 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W pb = (l -> pb & 0x80) ? 0xD0 : 0xCF; break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9D : 0x8D; break; } l -> pb = pb; return; } else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15) { // if not a 5 bit value, is indirect, or is not X,Y,U,S l -> lint = 1; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x88 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W // use 16 bit because W doesn't have 8 bit, unless 0 if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; l -> lint = 0; } else { pb = (l -> pb & 0x80) ? 0xD0 : 0xCF; l -> lint = 2; } break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9C : 0x8C; break; } l -> pb = pb; return; } else { // we have X,Y,U,S and a possible 16 bit here l -> lint = 0; if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x03) << 5 | 0x84; } else { pb = (l -> pb & 0x03) << 5 | (v & 0x1F); } l -> pb = pb; return; } } else { // we don't know how big it is if (!force) return; // force 16 bit if we don't know l -> lint = 2; goto do16bit; } } RESOLVEFUNC(insn_resolve_indexed) { if (l -> lint == -1) insn_resolve_indexed_aux(as, l, force, 0); if (l -> lint != -1 && l -> pb != -1) { l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1; } } void insn_emit_indexed_aux(asmstate_t *as, line_t *l) { lw_expr_t e; lwasm_emitop(l, instab[l -> insn].ops[0]); lwasm_emitop(l, l -> pb); if (l -> lint > 0) { e = lwasm_fetch_expr(l, 0); lwasm_emitexpr(l, e, l -> lint); } } EMITFUNC(insn_emit_indexed) { insn_emit_indexed_aux(as, l); }