view lwasm/insn_indexed.c @ 349:b62af915c2cc

Fix includebin to use binary mode when emitting the contents of the file. For systems with the stupid distinction between binary and text files (I'm looking at you Windows), actually specify binary mode when reading the include file for a binary include. It worked fine on Linux and other Unix-like systems which treat files as a simple sequence of bytes but on Windows, you get the benefit of 0x1A causing an EOF signal with text mode files which is not helpful.
author William Astle <lost@l-w.ca>
date Sun, 12 Apr 2015 12:11:19 -0600
parents b7e4992c12e7
children c6d2a1f54e0c
line wrap: on
line source

/*
insn_indexed.c
Copyright © 2009 William Astle

This file is part of LWASM.

LWASM is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
*/

/*
for handling indexed mode instructions
*/

#include <ctype.h>
#include <string.h>

#include <lw_expr.h>

#include "lwasm.h"
#include "instab.h"

/*
l -> lint: size of operand (0, 1, 2, -1 if not determined)
l -> pb: actual post byte (from "resolve" stage) or info passed
	forward to the resolve stage (if l -> line is -1); 0x80 is indir
	bits 0-2 are register number
*/
void insn_parse_indexed_aux(asmstate_t *as, line_t *l, char **p)
{
	struct opvals { char *opstr; int pb; };
	
	static const char *regs = "X  Y  U  S  W  PCRPC ";
	static const struct opvals simpleindex[] =
	{
		{",x", 0x84},		{",y", 0xa4},		{",u", 0xc4},		{",s", 0xe4},
		{",x+", 0x80},		{",y+", 0xa0},		{",u+", 0xc0},		{",s+", 0xe0},
		{",x++", 0x81},		{",y++", 0xa1},		{",u++", 0xc1},		{",s++", 0xe1},
		{",-x", 0x82},		{",-y", 0xa2},		{",-u", 0xc2},		{",-s", 0xe2},
		{",--x", 0x83},		{",--y", 0xa3},		{",--u", 0xc3},		{",--s", 0xe3},
		{"a,x", 0x86},		{"a,y", 0xa6},		{"a,u", 0xc6},		{"a,s", 0xe6},
		{"b,x", 0x85},		{"b,y", 0xa5},		{"b,u", 0xc5},		{"b,s", 0xe5},
		{"e,x", 0x87},		{"e,y", 0xa7},		{"e,u", 0xc7},		{"e,s", 0xe7},
		{"f,x",	0x8a},		{"f,y",	0xaa},		{"f,u", 0xca},		{"f,s", 0xea},
		{"d,x", 0x8b},		{"d,y", 0xab},		{"d,u", 0xcb},		{"d,s", 0xeb},
		{"w,x", 0x8e},		{"w,y", 0xae},		{"w,u", 0xce},		{"w,s", 0xee},
		{",w", 0x8f},							{",w++", 0xcf},		{",--w", 0xef},
		
		{"[,x]", 0x94},		{"[,y]", 0xb4},		{"[,u]", 0xd4},		{"[,s]", 0xf4},
		{"[,x++]", 0x91},	{"[,y++]", 0xb1},	{"[,u++]", 0xd1},	{"[,s++]", 0xf1},
		{"[,--x]", 0x93},	{"[,--y]", 0xb3},	{"[,--u]", 0xd3},	{"[,--s]", 0xf3},
		{"[a,x]", 0x96},	{"[a,y]", 0xb6},	{"[a,u]", 0xd6},	{"[a,s]", 0xf6},
		{"[b,x]", 0x95},	{"[b,y]", 0xb5},	{"[b,u]", 0xd5},	{"[b,s]", 0xf5},
		{"[e,x]", 0x97},	{"[e,y]", 0xb7},	{"[e,u]", 0xd7},	{"[e,s]", 0xf7},
		{"[f,x]", 0x9a},	{"[f,y]", 0xba},	{"[f,u]", 0xda},	{"[f,s]", 0xfa},
		{"[d,x]", 0x9b},	{"[d,y]", 0xbb},	{"[d,u]", 0xdb},	{"[d,s]", 0xfb},
		{"[w,x]", 0x9e},	{"[w,y]", 0xbe},	{"[w,u]", 0xde},	{"[w,s]", 0xfe},
		{"[,w]", 0x90},							{"[,w++]", 0xd0},	{"[,--w]", 0xf0},
		
		{ "", -1 }
	};

	static const char *regs9 = "X  Y  U  S     PCRPC ";
	static const struct opvals simpleindex9[] =
	{
		{",x", 0x84},		{",y", 0xa4},		{",u", 0xc4},		{",s", 0xe4},
		{",x+", 0x80},		{",y+", 0xa0},		{",u+", 0xc0},		{",s+", 0xe0},
		{",x++", 0x81},		{",y++", 0xa1},		{",u++", 0xc1},		{",s++", 0xe1},
		{",-x", 0x82},		{",-y", 0xa2},		{",-u", 0xc2},		{",-s", 0xe2},
		{",--x", 0x83},		{",--y", 0xa3},		{",--u", 0xc3},		{",--s", 0xe3},
		{"a,x", 0x86},		{"a,y", 0xa6},		{"a,u", 0xc6},		{"a,s", 0xe6},
		{"b,x", 0x85},		{"b,y", 0xa5},		{"b,u", 0xc5},		{"b,s", 0xe5},
		{"d,x", 0x8b},		{"d,y", 0xab},		{"d,u", 0xcb},		{"d,s", 0xeb},
		
		{"[,x]", 0x94},		{"[,y]", 0xb4},		{"[,u]", 0xd4},		{"[,s]", 0xf4},
		{"[,x++]", 0x91},	{"[,y++]", 0xb1},	{"[,u++]", 0xd1},	{"[,s++]", 0xf1},
		{"[,--x]", 0x93},	{"[,--y]", 0xb3},	{"[,--u]", 0xd3},	{"[,--s]", 0xf3},
		{"[a,x]", 0x96},	{"[a,y]", 0xb6},	{"[a,u]", 0xd6},	{"[a,s]", 0xf6},
		{"[b,x]", 0x95},	{"[b,y]", 0xb5},	{"[b,u]", 0xd5},	{"[b,s]", 0xf5},
		{"[d,x]", 0x9b},	{"[d,y]", 0xbb},	{"[d,u]", 0xdb},	{"[d,s]", 0xfb},
		
		{ "", -1 }
	};
	char stbuf[25];
	int i, j, rn;
	int indir = 0;
	int f0 = 1;
	const struct opvals *simples;
	const char *reglist;
	lw_expr_t e;
		
	if (as -> target == TARGET_6809)
	{
		simples = simpleindex9;
		reglist = regs9;
	}
	else
	{
		simples = simpleindex;
		reglist = regs;
	}
	
	// fetch out operand for lookup
	for (i = 0; i < 24; i++)
	{
		if (*((*p) + i) && !isspace(*((*p) + i)))
			stbuf[i] = *((*p) + i);
		else
			break;
	}
	stbuf[i] = '\0';
	
	// now look up operand in "simple" table
	if (!*((*p) + i) || isspace(*((*p) + i)))
	{
		// do simple lookup
		for (j = 0; simples[j].opstr[0]; j++)
		{
			if (!strcasecmp(stbuf, simples[j].opstr))
				break;
		}
		if (simples[j].opstr[0])
		{
			l -> pb = simples[j].pb;
			l -> lint = 0;
			(*p) += i;
			return;
		}
	}

	// now do the "hard" ones

	// is it indirect?
	if (**p == '[')
	{
		indir = 1;
		(*p)++;
	}
	
	// look for a "," - all indexed modes have a "," except extended indir
	rn = 0;
	for (i = 0; (*p)[i] && !isspace((*p)[i]); i++)
	{
		if ((*p)[i] == ',')
		{
			rn = 1;
			break;
		}
	}

	// if no "," and indirect, do extended indir
	if (!rn && indir)
	{
		// eat the extended addressing indicator if present
		if (**p == '>')
			(*p)++;
		// extended indir
		l -> pb = 0x9f;
		e = lwasm_parse_expr(as, p);
		if (!e || **p != ']')
		{
			lwasm_register_error(as, l, "Bad operand");
			return;
		}
		lwasm_save_expr(l, 0, e);
		
		(*p)++;
		l -> lint = 2;
		return;
	}

	if (**p == '<')
	{
		l -> lint = 1;
		(*p)++;
	}
	else if (**p == '>')
	{
		l -> lint = 2;
		(*p)++;
	}

	if (**p == '0' && *((*p)+1) == ',')
	{
		f0 = 1;
	}
	
	// now we have to evaluate the expression
	e = lwasm_parse_expr(as, p);
	if (!e)
	{
		lwasm_register_error(as, l, "Bad operand");
		return;
	}
	lwasm_save_expr(l, 0, e);

	// now look for a comma; if not present, explode
	if (*(*p)++ != ',')
	{
		lwasm_register_error(as, l, "Bad operand");
		return;
	}
	
	// now get the register
	rn = lwasm_lookupreg3(reglist, p);
	if (rn < 0)
	{
		lwasm_register_error(as, l, "Bad register");
		return;
	}
	
	if (indir)
	{
		if (**p != ']')
		{
			lwasm_register_error(as, l, "Bad operand");
			return;
		}
		else
			(*p)++;
	}

	if (rn <= 3)
	{
		// X,Y,U,S
		if (l -> lint == 1)
		{
			l -> pb = 0x88 | (rn << 5) | (indir ? 0x10 : 0);
			return;
		}
		else if (l -> lint == 2)
		{
			l -> pb = 0x89 | (rn << 5) | (indir ? 0x10 : 0);
			return;
		}
	}

	// nnnn,W is only 16 bit (or 0 bit)
	if (rn == 4)
	{
		if (l -> lint == 1)
		{
			lwasm_register_error(as, l, "n,W cannot be 8 bit");
			return;
		}

		if (l -> lint == 2)
		{
			l -> pb = indir ? 0xb0 : 0xaf;
			l -> lint = 2;
			return;
		}
		
		l -> pb = (0x80 * indir) | rn;

/* [,w] and ,w
			if (indir)
				*b1 = 0x90;
			else
				*b1 = 0x8f;
*/
		return;
	}
	
	// PCR? then we have PC relative addressing (like B??, LB??)
	if (rn == 5 || (rn == 6 && CURPRAGMA(l, PRAGMA_PCASPCR)))
	{
		lw_expr_t e1, e2;
		// external references are handled exactly the same as for
		// relative addressing modes
		// on pass 1, adjust the expression for a subtraction of the
		// current address
		// e - (addr + linelen) => e - addr - linelen
		
		e2 = lw_expr_build(lw_expr_type_special, lwasm_expr_linelen, l);
		e1 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e, e2);
		lw_expr_destroy(e2);
		e2 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e1, l -> addr);
		lw_expr_destroy(e1);
		lwasm_save_expr(l, 0, e2);
		if (l -> lint == 1)
		{
			l -> pb = indir ? 0x9C : 0x8C;
			return;
		}
		if (l -> lint == 2)
		{
			l -> pb = indir ? 0x9D : 0x8D;
			return;
		}
	}
	
	if (rn == 6)
	{
		if (l -> lint == 1)
		{
			l -> pb = indir ? 0x9C : 0x8C;
			return;
		}
		if (l -> lint == 2)
		{
			l -> pb = indir ? 0x9D : 0x8D;
			return;
		}
	}

	l -> pb = (indir * 0x80) | rn | (f0 * 0x40);
}

PARSEFUNC(insn_parse_indexed)
{
	l -> lint = -1;
	insn_parse_indexed_aux(as, l, p);

	if (l -> lint != -1)
	{
		l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1;
	}
}

void insn_resolve_indexed_aux(asmstate_t *as, line_t *l, int force, int elen)
{
	// here, we have an expression which needs to be
	// resolved; the post byte is determined here as well
	lw_expr_t e, e2;
	int pb = -1;
	int v;
	
	if (l -> len != -1)
		return;

	e = lwasm_fetch_expr(l, 0);
	if (!lw_expr_istype(e, lw_expr_type_int))
	{
		// temporarily set the instruction length to see if we get a
		// constant for our expression; if so, we can select an instruction
		// size
		e2 = lw_expr_copy(e);
		// magic 2 for 8 bit (post byte + offset)
		l -> len = OPLEN(instab[l -> insn].ops[0]) + elen + 2;
		lwasm_reduce_expr(as, e2);
//		l -> len += 1;
//		e3 = lw_expr_copy(e);
//		lwasm_reduce_expr(as, e3);
		l -> len = -1;
		if (lw_expr_istype(e2, lw_expr_type_int))
		{
			v = lw_expr_intval(e2);
			// we have a reducible expression here which depends on
			// the size of this instruction
			if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4)
			{
				if ((l -> pb & 0x07) < 4)
				{
					pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0);
				}
				else
				{
					pb = (l -> pb & 0x80) ? 0x90 : 0x8F;
				}
				l -> pb = pb;
				lw_expr_destroy(e2);
				l -> lint = 0;
				return;
			}
			else if (v < -128 || v > 127)
			{
				l -> lint = 2;
				switch (l -> pb & 0x07)
				{
				case 0:
				case 1:
				case 2:
				case 3:
					pb = 0x89 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0);
					break;
			
				case 4: // W
					pb = (l -> pb & 0x80) ? 0xB0 : 0xAF;
					break;
				
				case 5: // PCR
				case 6: // PC
					pb = (l -> pb & 0x80) ? 0x9D : 0x8D;
					break;
				}
				
				l -> pb = pb;
				lw_expr_destroy(e2);
//				lw_expr_destroy(e3);
				return;
			}
			else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15)
			{
				// if not a 5 bit value, is indirect, or is not X,Y,U,S
				l -> lint = 1;
				switch (l -> pb & 0x07)
				{
				case 0:
				case 1:
				case 2:
				case 3:
					pb = 0x88 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0);
					break;
			
				case 4: // W
					// use 16 bit because W doesn't have 8 bit, unless 0
					if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40))
					{
						pb = (l -> pb & 0x80) ? 0x90 : 0x8F;
						l -> lint = 0;
					}
					else
					{
						pb = (l -> pb & 0x80) ? 0xB0 : 0xAF;
						l -> lint = 2;
					}
					break;
				
				case 5: // PCR
				case 6: // PC
					pb = (l -> pb & 0x80) ? 0x9C : 0x8C;
					break;
				}
			
				l -> pb = pb;
				lw_expr_destroy(e2);
				return;
			}
			else
			{
				// we have X,Y,U,S and a possible 5 bit here
				l -> lint = 0;
				
				if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40))
				{
					pb = (l -> pb & 0x03) << 5 | 0x84;
				}	
				else
				{
					pb = ((l -> pb & 0x03) << 5) | (v & 0x1F);
				}
				l -> pb = pb;
				lw_expr_destroy(e2);
				return;
			}
		}
		lw_expr_destroy(e2);
	}
		
	if (lw_expr_istype(e, lw_expr_type_int))
	{
		// we know how big it is
		v = lw_expr_intval(e);
		if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4)
		{
			if ((l -> pb & 0x07) < 4)
			{
				pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0);
			}
			else
			{
				pb = (l -> pb & 0x80) ? 0x90 : 0x8F;
			}
			l -> pb = pb;
			l -> lint = 0;
			return;
		}
		else if (v < -128 || v > 127)
		{
		do16bit:
			l -> lint = 2;
			switch (l -> pb & 0x07)
			{
			case 0:
			case 1:
			case 2:
			case 3:
				pb = 0x89 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0);
				break;
			
			case 4: // W
				pb = (l -> pb & 0x80) ? 0xB0 : 0xAF;
				break;
				
			case 5: // PCR
			case 6: // PC
				pb = (l -> pb & 0x80) ? 0x9D : 0x8D;
				break;
			}
			
			l -> pb = pb;
			return;
		}
		else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15)
		{
			// if not a 5 bit value, is indirect, or is not X,Y,U,S
			l -> lint = 1;
			switch (l -> pb & 0x07)
			{
			case 0:
			case 1:
			case 2:
			case 3:
				pb = 0x88 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0);
				break;
			
			case 4: // W
				// use 16 bit because W doesn't have 8 bit, unless 0
				if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40))
				{
					pb = (l -> pb & 0x80) ? 0x90 : 0x8F;
					l -> lint = 0;
				}
				else
				{
					pb = (l -> pb & 0x80) ? 0xB0 : 0xAF;
					l -> lint = 2;
				}
				break;
				
			case 5: // PCR
			case 6: // PC
				pb = (l -> pb & 0x80) ? 0x9C : 0x8C;
				break;
			}
			
			l -> pb = pb;
			return;
		}
		else
		{
			// we have X,Y,U,S and a possible 5 bit here
			l -> lint = 0;
			
			if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40))
			{
				pb = (l -> pb & 0x03) << 5 | 0x84;
			}
			else
			{
				pb = ((l -> pb & 0x03) << 5) | (v & 0x1F);
			}
			l -> pb = pb;
			return;
		}
	}
	else
	{
		// we don't know how big it is
		if (!force)
			return;
		// force 16 bit if we don't know
		l -> lint = 2;
		goto do16bit;
	}
}

RESOLVEFUNC(insn_resolve_indexed)
{
	if (l -> lint == -1)
		insn_resolve_indexed_aux(as, l, force, 0);
	
	if (l -> lint != -1 && l -> pb != -1)
	{
		l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1;
	}
}

void insn_emit_indexed_aux(asmstate_t *as, line_t *l)
{
	lw_expr_t e;
	
	if (l -> lint == 1)
	{
		int i;
		e = lwasm_fetch_expr(l, 0);
		i = lw_expr_intval(e);
		if (i < -128 || i > 127)
		{
			lwasm_register_error(as, l, "Byte overflow");
		}
	}
	
	lwasm_emitop(l, instab[l -> insn].ops[0]);
	lwasm_emitop(l, l -> pb);
	if (l -> lint > 0)
	{
		e = lwasm_fetch_expr(l, 0);
		lwasm_emitexpr(l, e, l -> lint);
	}
}

EMITFUNC(insn_emit_indexed)
{
	insn_emit_indexed_aux(as, l);
}