Mercurial > hg > index.cgi
view lwasm/pass4.c @ 417:d7b7004b0883
Update gcc6809 patch to fix an ICE.
Add new gcc6809 patch with a fix to an internal compiler error reported by
Tormod Volden. It seems whoever created the offending instruction patterns
didn't fully understand the instruction contraints system and likely got
away with it due to characteristics of the instruction generator in previous
versions of gcc. Alas, it causes problems now so unless someone has a
brilliant idea how to make it work, addhi_mem_1 and addhi_mem_minus1 have to
go. Fortunately, the compiler is smart enough to use an alternate strategy
all on its own.
author | William Astle <lost@l-w.ca> |
---|---|
date | Sun, 27 Mar 2016 21:46:18 -0600 |
parents | 8764142b3192 |
children |
line wrap: on
line source
/* pass4.c Copyright © 2010 William Astle This file is part of LWTOOLS. LWTOOLS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdio.h> #include <string.h> #include <lw_alloc.h> #include <lw_string.h> #include "lwasm.h" #include "instab.h" /* Resolve2 Pass Force resolution of instruction sizes. */ void do_pass4_aux(asmstate_t *as, int force) { int rc; int cnt; line_t *cl, *sl; struct line_expr_s *le; int trycount = 0; // first, count the number of unresolved instructions for (cnt = 0, cl = as -> line_head; cl; cl = cl -> next) { if (cl -> len == -1) cnt++; } sl = as -> line_head; while (cnt > 0) { trycount = cnt; debug_message(as, 60, "%d unresolved instructions", cnt); // find an unresolved instruction for ( ; sl && sl -> len != -1; sl = sl -> next) { debug_message(as, 200, "Search line %p", sl); as -> cl = sl; lwasm_reduce_expr(as, sl -> addr); lwasm_reduce_expr(as, sl -> daddr); // simplify each expression for (le = sl -> exprs; le; le = le -> next) lwasm_reduce_expr(as, le -> expr); } debug_message(as, 200, "Found line %p", sl); // simplify address as -> cl = sl; lwasm_reduce_expr(as, sl -> addr); lwasm_reduce_expr(as, sl -> daddr); // simplify each expression for (le = sl -> exprs; le; le = le -> next) lwasm_reduce_expr(as, le -> expr); if (sl -> len == -1 && sl -> insn >= 0 && instab[sl -> insn].resolve) { (instab[sl -> insn].resolve)(as, sl, 1); debug_message(as, 200, "Try resolve = %d/%d", sl -> len, sl -> dlen); if (force && sl -> len == -1 && sl -> dlen == -1) { lwasm_register_error(as, sl, E_INSTRUCTION_FAILED); return; } } if (sl -> len != -1 && sl -> dlen != -1) { cnt--; if (cnt == 0) return; // this one resolved - try looking for the next one instead // of wasting time running through the rest of the lines continue; } do { debug_message(as, 200, "Flatten after..."); rc = 0; for (cl = sl; cl; cl = cl -> next) { debug_message(as, 200, "Flatten line %p", cl); as -> cl = cl; // simplify address lwasm_reduce_expr(as, cl -> addr); lwasm_reduce_expr(as, cl -> daddr); // simplify each expression for (le = cl -> exprs; le; le = le -> next) lwasm_reduce_expr(as, le -> expr); if (cl -> len == -1) { // try resolving the instruction length // but don't force resolution if (cl -> insn >= 0 && instab[cl -> insn].resolve) { (instab[cl -> insn].resolve)(as, cl, 0); if ((cl -> inmod == 0) && cl -> len >= 0 && cl -> dlen >= 0) { if (cl -> len == 0) cl -> len = cl -> dlen; else cl -> dlen = cl -> len; } debug_message(as, 200, "Flatten resolve returns %d", cl -> len); if (cl -> len != -1 && cl -> dlen != -1) { rc++; cnt--; if (cnt == 0) return; } } } } if (as -> errorcount > 0) return; } while (rc > 0); if (trycount == cnt) break; } } void do_pass4(asmstate_t *as) { do_pass4_aux(as, 1); }