Mercurial > hg > index.cgi
view lwasm/insn_indexed.c @ 235:e3741cf53e00
Fix error messages related to undefined symbols in lwlink
Make lwlink not complain about seciton base and length symbols. Also silence
duplicate complaints about undefined symbols. There is no need to complain
about undefined symbols during the file/section resolution stage! If they
are truly undefined, they'll still be undefined at the reference resolution
stage.
author | William Astle <lost@l-w.ca> |
---|---|
date | Sat, 11 Aug 2012 15:18:58 -0600 |
parents | c45f23ae79e6 |
children | 65510f1574e4 |
line wrap: on
line source
/* insn_indexed.c Copyright © 2009 William Astle This file is part of LWASM. LWASM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* for handling indexed mode instructions */ #include <ctype.h> #include <string.h> #include <lw_expr.h> #include "lwasm.h" #include "instab.h" /* l -> lint: size of operand (0, 1, 2, -1 if not determined) l -> pb: actual post byte (from "resolve" stage) or info passed forward to the resolve stage (if l -> line is -1); 0x80 is indir bits 0-2 are register number */ void insn_parse_indexed_aux(asmstate_t *as, line_t *l, char **p) { struct opvals { char *opstr; int pb; }; static const char *regs = "X Y U S W PCRPC "; static const struct opvals simpleindex[] = { {",x", 0x84}, {",y", 0xa4}, {",u", 0xc4}, {",s", 0xe4}, {",x+", 0x80}, {",y+", 0xa0}, {",u+", 0xc0}, {",s+", 0xe0}, {",x++", 0x81}, {",y++", 0xa1}, {",u++", 0xc1}, {",s++", 0xe1}, {",-x", 0x82}, {",-y", 0xa2}, {",-u", 0xc2}, {",-s", 0xe2}, {",--x", 0x83}, {",--y", 0xa3}, {",--u", 0xc3}, {",--s", 0xe3}, {"a,x", 0x86}, {"a,y", 0xa6}, {"a,u", 0xc6}, {"a,s", 0xe6}, {"b,x", 0x85}, {"b,y", 0xa5}, {"b,u", 0xc5}, {"b,s", 0xe5}, {"e,x", 0x87}, {"e,y", 0xa7}, {"e,u", 0xc7}, {"e,s", 0xe7}, {"f,x", 0x8a}, {"f,y", 0xaa}, {"f,u", 0xca}, {"f,s", 0xea}, {"d,x", 0x8b}, {"d,y", 0xab}, {"d,u", 0xcb}, {"d,s", 0xed}, {"w,x", 0x8e}, {"w,y", 0xae}, {"w,u", 0xce}, {"w,s", 0xee}, {",w", 0x8f}, {",w++", 0xcf}, {",--w", 0xef}, {"[,x]", 0x94}, {"[,y]", 0xb4}, {"[,u]", 0xd4}, {"[,s]", 0xf4}, {"[,x++]", 0x91}, {"[,y++]", 0xb1}, {"[,u++]", 0xd1}, {"[,s++]", 0xf1}, {"[,--x]", 0x93}, {"[,--y]", 0xb3}, {"[,--u]", 0xd3}, {"[,--s]", 0xf3}, {"[a,x]", 0x96}, {"[a,y]", 0xb6}, {"[a,u]", 0xd6}, {"[a,s]", 0xf6}, {"[b,x]", 0x95}, {"[b,y]", 0xb5}, {"[b,u]", 0xd5}, {"[b,s]", 0xf5}, {"[e,x]", 0x97}, {"[e,y]", 0xb7}, {"[e,u]", 0xd7}, {"[e,s]", 0xf7}, {"[f,x]", 0x9a}, {"[f,y]", 0xba}, {"[f,u]", 0xda}, {"[f,s]", 0xfa}, {"[d,x]", 0x9b}, {"[d,y]", 0xbb}, {"[d,u]", 0xdb}, {"[d,s]", 0xfd}, {"[w,x]", 0x9e}, {"[w,y]", 0xbe}, {"[w,u]", 0xde}, {"[w,s]", 0xfe}, {"[,w]", 0x90}, {"[,w++]", 0xd0}, {"[,--w]", 0xf0}, { "", -1 } }; static const char *regs9 = "X Y U S PCRPC "; static const struct opvals simpleindex9[] = { {",x", 0x84}, {",y", 0xa4}, {",u", 0xc4}, {",s", 0xe4}, {",x+", 0x80}, {",y+", 0xa0}, {",u+", 0xc0}, {",s+", 0xe0}, {",x++", 0x81}, {",y++", 0xa1}, {",u++", 0xc1}, {",s++", 0xe1}, {",-x", 0x82}, {",-y", 0xa2}, {",-u", 0xc2}, {",-s", 0xe2}, {",--x", 0x83}, {",--y", 0xa3}, {",--u", 0xc3}, {",--s", 0xe3}, {"a,x", 0x86}, {"a,y", 0xa6}, {"a,u", 0xc6}, {"a,s", 0xe6}, {"b,x", 0x85}, {"b,y", 0xa5}, {"b,u", 0xc5}, {"b,s", 0xe5}, {"d,x", 0x8b}, {"d,y", 0xab}, {"d,u", 0xcb}, {"d,s", 0xed}, {"[,x]", 0x94}, {"[,y]", 0xb4}, {"[,u", 0xd4}, {"[,s]", 0xf4}, {"[,x++]", 0x91}, {"[,y++]", 0xb1}, {"[,u++]", 0xd1}, {"[,s++]", 0xf1}, {"[,--x]", 0x93}, {"[,--y]", 0xb3}, {"[,--u]", 0xd3}, {"[,--s]", 0xf3}, {"[a,x]", 0x96}, {"[a,y]", 0xb6}, {"[a,u]", 0xd6}, {"[a,s]", 0xf6}, {"[b,x]", 0x95}, {"[b,y]", 0xb5}, {"[b,u]", 0xd5}, {"[b,s]", 0xf5}, {"[d,x]", 0x9b}, {"[d,y]", 0xbb}, {"[d,u]", 0xdb}, {"[d,s]", 0xfd}, { "", -1 } }; char stbuf[25]; int i, j, rn; int indir = 0; int f0 = 1; const struct opvals *simples; const char *reglist; lw_expr_t e; if (as -> target == TARGET_6809) { simples = simpleindex9; reglist = regs9; } else { simples = simpleindex; reglist = regs; } // fetch out operand for lookup for (i = 0; i < 24; i++) { if (*((*p) + i) && !isspace(*((*p) + i))) stbuf[i] = *((*p) + i); else break; } stbuf[i] = '\0'; // now look up operand in "simple" table if (!*((*p) + i) || isspace(*((*p) + i))) { // do simple lookup for (j = 0; simples[j].opstr[0]; j++) { if (!strcasecmp(stbuf, simples[j].opstr)) break; } if (simples[j].opstr[0]) { l -> pb = simples[j].pb; l -> lint = 0; (*p) += i; return; } } // now do the "hard" ones // is it indirect? if (**p == '[') { indir = 1; (*p)++; } // look for a "," - all indexed modes have a "," except extended indir rn = 0; for (i = 0; (*p)[i] && !isspace((*p)[i]); i++) { if ((*p)[i] == ',') { rn = 1; break; } } // if no "," and indirect, do extended indir if (!rn && indir) { // eat the extended addressing indicator if present if (**p == '>') (*p)++; // extended indir l -> pb = 0x9f; e = lwasm_parse_expr(as, p); if (!e || **p != ']') { lwasm_register_error(as, l, "Bad operand"); return; } lwasm_save_expr(l, 0, e); (*p)++; l -> lint = 2; return; } if (**p == '<') { l -> lint = 1; (*p)++; } else if (**p == '>') { l -> lint = 2; (*p)++; } if (**p == '0' && *((*p)+1) == ',') { f0 = 1; } // now we have to evaluate the expression e = lwasm_parse_expr(as, p); if (!e) { lwasm_register_error(as, l, "Bad operand"); return; } lwasm_save_expr(l, 0, e); // now look for a comma; if not present, explode if (*(*p)++ != ',') { lwasm_register_error(as, l, "Bad operand"); return; } // now get the register rn = lwasm_lookupreg3(reglist, p); if (rn < 0) { lwasm_register_error(as, l, "Bad register"); return; } if (indir) { if (**p != ']') { lwasm_register_error(as, l, "Bad operand"); return; } else (*p)++; } if (rn <= 3) { // X,Y,U,S if (l -> lint == 1) { l -> pb = 0x88 | (rn << 5) | (indir ? 0x10 : 0); return; } else if (l -> lint == 2) { l -> pb = 0x89 | (rn << 5) | (indir ? 0x10 : 0); return; } } // nnnn,W is only 16 bit (or 0 bit) if (rn == 4) { if (l -> lint == 1) { lwasm_register_error(as, l, "n,W cannot be 8 bit"); return; } if (l -> lint == 2) { l -> pb = indir ? 0xb0 : 0xaf; l -> lint = 2; return; } l -> pb = (0x80 * indir) | rn; /* [,w] and ,w if (indir) *b1 = 0x90; else *b1 = 0x8f; */ return; } // PCR? then we have PC relative addressing (like B??, LB??) if (rn == 5 || (rn == 6 && CURPRAGMA(l, PRAGMA_PCASPCR))) { lw_expr_t e1, e2; // external references are handled exactly the same as for // relative addressing modes // on pass 1, adjust the expression for a subtraction of the // current address // e - (addr + linelen) => e - addr - linelen e2 = lw_expr_build(lw_expr_type_special, lwasm_expr_linelen, l); e1 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e, e2); lw_expr_destroy(e2); e2 = lw_expr_build(lw_expr_type_oper, lw_expr_oper_minus, e1, l -> addr); lw_expr_destroy(e1); lwasm_save_expr(l, 0, e2); if (l -> lint == 1) { l -> pb = indir ? 0x9C : 0x8C; return; } if (l -> lint == 2) { l -> pb = indir ? 0x9D : 0x8D; return; } } if (rn == 6) { if (l -> lint == 1) { l -> pb = indir ? 0x9C : 0x8C; return; } if (l -> lint == 2) { l -> pb = indir ? 0x9D : 0x8D; return; } } l -> pb = (indir * 0x80) | rn | (f0 * 0x40); } PARSEFUNC(insn_parse_indexed) { l -> lint = -1; insn_parse_indexed_aux(as, l, p); if (l -> lint != -1) { l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1; } } void insn_resolve_indexed_aux(asmstate_t *as, line_t *l, int force, int elen) { // here, we have an expression which needs to be // resolved; the post byte is determined here as well lw_expr_t e, e2; int pb = -1; int v; if (l -> len != -1) return; e = lwasm_fetch_expr(l, 0); if (!lw_expr_istype(e, lw_expr_type_int)) { // temporarily set the instruction length to see if we get a // constant for our expression; if so, we can select an instruction // size e2 = lw_expr_copy(e); // magic 2 for 8 bit (post byte + offset) l -> len = OPLEN(instab[l -> insn].ops[0]) + elen + 2; lwasm_reduce_expr(as, e2); // l -> len += 1; // e3 = lw_expr_copy(e); // lwasm_reduce_expr(as, e3); l -> len = -1; if (lw_expr_istype(e2, lw_expr_type_int)) { v = lw_expr_intval(e2); // we have a reducible expression here which depends on // the size of this instruction if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4) { if ((l -> pb & 0x07) < 4) { pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); } else { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; } l -> pb = pb; lw_expr_destroy(e2); l -> lint = 0; return; } else if (v < -128 || v > 127) { l -> lint = 2; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x89 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9D : 0x8D; break; } l -> pb = pb; lw_expr_destroy(e2); // lw_expr_destroy(e3); return; } else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15) { // if not a 5 bit value, is indirect, or is not X,Y,U,S l -> lint = 1; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x88 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W // use 16 bit because W doesn't have 8 bit, unless 0 if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; l -> lint = 0; } else { pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; l -> lint = 2; } break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9C : 0x8C; break; } l -> pb = pb; lw_expr_destroy(e2); return; } else { // we have X,Y,U,S and a possible 5 bit here l -> lint = 0; if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x03) << 5 | 0x84; } else { pb = ((l -> pb & 0x03) << 5) | (v & 0x1F); } l -> pb = pb; lw_expr_destroy(e2); return; } } lw_expr_destroy(e2); } if (lw_expr_istype(e, lw_expr_type_int)) { // we know how big it is v = lw_expr_intval(e); if (v == 0 && !CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) && (l -> pb & 0x07) <= 4) { if ((l -> pb & 0x07) < 4) { pb = 0x84 | ((l -> pb & 0x03) << 5) | ((l -> pb & 0x80) ? 0x10 : 0); } else { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; } l -> pb = pb; l -> lint = 0; return; } else if (v < -128 || v > 127) { do16bit: l -> lint = 2; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x89 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9D : 0x8D; break; } l -> pb = pb; return; } else if ((l -> pb & 0x80) || ((l -> pb & 0x07) > 3) || v < -16 || v > 15) { // if not a 5 bit value, is indirect, or is not X,Y,U,S l -> lint = 1; switch (l -> pb & 0x07) { case 0: case 1: case 2: case 3: pb = 0x88 | (l -> pb & 0x03) << 5 | ((l -> pb & 0x80) ? 0x10 : 0); break; case 4: // W // use 16 bit because W doesn't have 8 bit, unless 0 if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x80) ? 0x90 : 0x8F; l -> lint = 0; } else { pb = (l -> pb & 0x80) ? 0xB0 : 0xAF; l -> lint = 2; } break; case 5: // PCR case 6: // PC pb = (l -> pb & 0x80) ? 0x9C : 0x8C; break; } l -> pb = pb; return; } else { // we have X,Y,U,S and a possible 5 bit here l -> lint = 0; if (v == 0 && !(CURPRAGMA(l, PRAGMA_NOINDEX0TONONE) || l -> pb & 0x40)) { pb = (l -> pb & 0x03) << 5 | 0x84; } else { pb = ((l -> pb & 0x03) << 5) | (v & 0x1F); } l -> pb = pb; return; } } else { // we don't know how big it is if (!force) return; // force 16 bit if we don't know l -> lint = 2; goto do16bit; } } RESOLVEFUNC(insn_resolve_indexed) { if (l -> lint == -1) insn_resolve_indexed_aux(as, l, force, 0); if (l -> lint != -1 && l -> pb != -1) { l -> len = OPLEN(instab[l -> insn].ops[0]) + l -> lint + 1; } } void insn_emit_indexed_aux(asmstate_t *as, line_t *l) { lw_expr_t e; lwasm_emitop(l, instab[l -> insn].ops[0]); lwasm_emitop(l, l -> pb); if (l -> lint > 0) { e = lwasm_fetch_expr(l, 0); lwasm_emitexpr(l, e, l -> lint); } } EMITFUNC(insn_emit_indexed) { insn_emit_indexed_aux(as, l); }