Mercurial > hg > index.cgi
view docs/manual/x591.html @ 577:e49d24f4a9a5
Correct bug in the object file output code leading to stack corruption
It turns out leaving a pointer to a stack allocated temporary in a
persistent data structure is not conducive to correct program operation.
Undo the export check setup in the object file output sequence so a
pointer to stack allocated memory is not left hanging when the function
returns. This seems to correct at least one mysterious crash bug, and
possibly others.
Thanks to Boisy Pitre for reporting the crash bug that led to this
discovery, as well as a previous crash bug that likely has the same
root cause.
Additional thanks to Ciaran Anscomb whose debugger wielding wizardry
revealed the exact location of this particular bit of unbrilliance.
author | William Astle <lost@l-w.ca> |
---|---|
date | Sat, 03 Aug 2024 14:30:06 -0600 |
parents | fc072f6cde09 |
children |
line wrap: on
line source
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd"> <HTML ><HEAD ><TITLE >Structures</TITLE ><META NAME="GENERATOR" CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINK REL="HOME" TITLE="LW Tool Chain" HREF="index.html"><LINK REL="UP" TITLE="LWASM" HREF="c62.html"><LINK REL="PREVIOUS" TITLE="Macros" HREF="x568.html"><LINK REL="NEXT" TITLE="Object Files and Sections" HREF="x612.html"></HEAD ><BODY CLASS="SECTION" BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#840084" ALINK="#0000FF" ><DIV CLASS="NAVHEADER" ><TABLE SUMMARY="Header navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TH COLSPAN="3" ALIGN="center" >LW Tool Chain</TH ></TR ><TR ><TD WIDTH="10%" ALIGN="left" VALIGN="bottom" ><A HREF="x568.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="80%" ALIGN="center" VALIGN="bottom" >Chapter 3. LWASM</TD ><TD WIDTH="10%" ALIGN="right" VALIGN="bottom" ><A HREF="x612.html" ACCESSKEY="N" >Next</A ></TD ></TR ></TABLE ><HR ALIGN="LEFT" WIDTH="100%"></DIV ><DIV CLASS="SECTION" ><H1 CLASS="SECTION" ><A NAME="AEN591" >3.8. Structures</A ></H1 ><P > Structures are used to group related data in a fixed structure. A structure consists a number of fields, defined in sequential order and which take up specified size. The assembler does not enforce any means of access within a structure; it assumes that whatever you are doing, you intended to do. There are two pseudo ops that are used for defining structures. </P ><P ></P ><DIV CLASS="VARIABLELIST" ><DL ><DT ><CODE CLASS="PARAMETER" >structname</CODE > STRUCT</DT ><DD ><P > This directive is used to begin the definition of a structure with name <CODE CLASS="PARAMETER" >structname</CODE >. Subsequent statements all form part of the structure definition until the end of the structure is declared. </P ></DD ><DT >ENDSTRUCT, ENDS</DT ><DD ><P >This directive ends the definition of the structure. ENDSTRUCT is the preferred form. Prior to version 3.0 of LWASM, ENDS was used to end a section instead of a structure.</P ></DD ></DL ></DIV ><P > Within a structure definition, only reservation pseudo ops are permitted. Anything else will cause an assembly error.</P ><P > Once a structure is defined, you can reserve an area of memory in the same structure by using the structure name as the opcode. Structures can also contain fields that are themselves structures. See the example below.</P ><PRE CLASS="PROGRAMLISTING" >tstruct2 STRUCT f1 rmb 1 f2 rmb 1 ENDSTRUCT tstruct STRUCT field1 rmb 2 field2 rmb 3 field3 tstruct2 ENDSTRUCT ORG $2000 var1 tstruct var2 tstruct2</PRE ><P >Fields are referenced using a dot (.) as a separator. To refer to the generic offset within a structure, use the structure name to the left of the dot. If referring to a field within an actual variable, use the variable's symbol name to the left of the dot.</P ><P >You can also refer to the actual size of a structure (or a variable declared as a structure) using the special symbol sizeof{structname} where structname will be the name of the structure or the name of the variable.</P ><P >Essentially, structures are a shortcut for defining a vast number of symbols. When a structure is defined, the assembler creates symbols for the various fields in the form structname.fieldname as well as the appropriate sizeof{structname} symbol. When a variable is declared as a structure, the assembler does the same thing using the name of the variable. You will see these symbols in the symbol table when the assembler is instructed to provide a listing. For instance, the above listing will create the following symbols (symbol values in parentheses): tstruct2.f1 (0), tstruct2.f2 (1), sizeof{tstruct2} (2), tstruct.field1 (0), tstruct.field2 (2), tstruct.field3 (5), tstruct.field3.f1 (5), tstruct.field3.f2 (6), sizeof{tstruct.field3} (2), sizeof{tstruct} (7), var1 {$2000}, var1.field1 {$2000}, var1.field2 {$2002}, var1.field3 {$2005}, var1.field3.f1 {$2005}, var1.field3.f2 {$2006}, sizeof(var1.field3} (2), sizeof{var1} (7), var2 ($2007), var2.f1 ($2007), var2.f2 ($2008), sizeof{var2} (2). </P ></DIV ><DIV CLASS="NAVFOOTER" ><HR ALIGN="LEFT" WIDTH="100%"><TABLE SUMMARY="Footer navigation table" WIDTH="100%" BORDER="0" CELLPADDING="0" CELLSPACING="0" ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" ><A HREF="x568.html" ACCESSKEY="P" >Prev</A ></TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="index.html" ACCESSKEY="H" >Home</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" ><A HREF="x612.html" ACCESSKEY="N" >Next</A ></TD ></TR ><TR ><TD WIDTH="33%" ALIGN="left" VALIGN="top" >Macros</TD ><TD WIDTH="34%" ALIGN="center" VALIGN="top" ><A HREF="c62.html" ACCESSKEY="U" >Up</A ></TD ><TD WIDTH="33%" ALIGN="right" VALIGN="top" >Object Files and Sections</TD ></TR ></TABLE ></DIV ></BODY ></HTML >