339
|
1 /*
|
|
2 expr.c
|
|
3 Copyright © 2008 William Astle
|
|
4
|
|
5 This file is part of LWASM.
|
|
6
|
|
7 LWASM is free software: you can redistribute it and/or modify it under the
|
|
8 terms of the GNU General Public License as published by the Free Software
|
|
9 Foundation, either version 3 of the License, or (at your option) any later
|
|
10 version.
|
|
11
|
|
12 This program is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
15 more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License along with
|
|
18 this program. If not, see <http://www.gnu.org/licenses/>.
|
|
19 */
|
|
20
|
|
21 /*
|
|
22 This file contains the actual expression evaluator
|
|
23 */
|
|
24
|
|
25 #define __expr_c_seen__
|
|
26
|
|
27 #include <config.h>
|
|
28
|
|
29 #include <ctype.h>
|
|
30 #include <stdlib.h>
|
|
31 #include <string.h>
|
|
32
|
|
33 #include "expr.h"
|
|
34 #include "util.h"
|
|
35 #include "lwasm.h"
|
|
36
|
|
37 lwasm_expr_stack_t *lwasm_expr_stack_create(void)
|
|
38 {
|
|
39 lwasm_expr_stack_t *s;
|
|
40
|
|
41 s = lwasm_alloc(sizeof(lwasm_expr_stack_t));
|
|
42 s -> head = NULL;
|
|
43 s -> tail = NULL;
|
|
44 return s;
|
|
45 }
|
|
46
|
|
47 void lwasm_expr_stack_free(lwasm_expr_stack_t *s)
|
|
48 {
|
|
49 while (s -> head)
|
|
50 {
|
|
51 s -> tail = s -> head;
|
|
52 s -> head = s -> head -> next;
|
|
53 lwasm_expr_term_free(s -> tail -> term);
|
|
54 lwasm_free(s -> tail);
|
|
55 }
|
|
56 lwasm_free(s);
|
|
57 }
|
|
58
|
|
59 void lwasm_expr_term_free(lwasm_expr_term_t *t)
|
|
60 {
|
|
61 if (t)
|
|
62 {
|
|
63 if (t -> term_type == LWASM_TERM_SYM)
|
|
64 lwasm_free(t -> symbol);
|
|
65 lwasm_free(t);
|
|
66 }
|
|
67 }
|
|
68
|
|
69 lwasm_expr_term_t *lwasm_expr_term_create_oper(int oper)
|
|
70 {
|
|
71 lwasm_expr_term_t *t;
|
|
72
|
|
73 debug_message(10, "Creating operator term: %d", oper);
|
|
74
|
|
75 t = lwasm_alloc(sizeof(lwasm_expr_term_t));
|
|
76 t -> term_type = LWASM_TERM_OPER;
|
|
77 t -> value = oper;
|
|
78 return t;
|
|
79 }
|
|
80
|
|
81 lwasm_expr_term_t *lwasm_expr_term_create_int(int val)
|
|
82 {
|
|
83 lwasm_expr_term_t *t;
|
|
84 debug_message(10, "Creating integer term: %d", val);
|
|
85
|
|
86 t = lwasm_alloc(sizeof(lwasm_expr_term_t));
|
|
87 t -> term_type = LWASM_TERM_INT;
|
|
88 t -> value = val;
|
|
89 return t;
|
|
90 }
|
|
91
|
|
92 lwasm_expr_term_t *lwasm_expr_term_create_secbase(void)
|
|
93 {
|
|
94 lwasm_expr_term_t *t;
|
|
95 debug_message(10, "Creating section base term");
|
|
96
|
|
97 t = lwasm_alloc(sizeof(lwasm_expr_term_t));
|
|
98 t -> term_type = LWASM_TERM_SECBASE;
|
|
99 return t;
|
|
100 }
|
|
101
|
|
102 lwasm_expr_term_t *lwasm_expr_term_create_sym(char *sym)
|
|
103 {
|
|
104 lwasm_expr_term_t *t;
|
|
105
|
|
106 debug_message(10, "Creating symbol term: %s", sym);
|
|
107
|
|
108 t = lwasm_alloc(sizeof(lwasm_expr_term_t));
|
|
109 t -> term_type = LWASM_TERM_SYM;
|
|
110 t -> symbol = lwasm_strdup(sym);
|
|
111 return t;
|
|
112 }
|
|
113
|
|
114 lwasm_expr_term_t *lwasm_expr_term_dup(lwasm_expr_term_t *t)
|
|
115 {
|
|
116 switch (t -> term_type)
|
|
117 {
|
|
118 case LWASM_TERM_INT:
|
|
119 return lwasm_expr_term_create_int(t -> value);
|
|
120
|
|
121 case LWASM_TERM_OPER:
|
|
122 return lwasm_expr_term_create_oper(t -> value);
|
|
123
|
|
124 case LWASM_TERM_SYM:
|
|
125 return lwasm_expr_term_create_sym(t -> symbol);
|
|
126
|
|
127 case LWASM_TERM_SECBASE:
|
|
128 return lwasm_expr_term_create_secbase();
|
|
129
|
|
130 default:
|
|
131 debug_message(0, "lwasm_expr_term_dup(): invalid term type %d", t -> term_type);
|
|
132 exit(1);
|
|
133 }
|
|
134 // can't get here
|
|
135 }
|
|
136
|
|
137 void lwasm_expr_stack_push(lwasm_expr_stack_t *s, lwasm_expr_term_t *t)
|
|
138 {
|
|
139 lwasm_expr_stack_node_t *n;
|
|
140
|
|
141 if (!s)
|
|
142 {
|
|
143 debug_message(0, "lwasm_expr_stack_push(): invalid stack pointer");
|
|
144 exit(1);
|
|
145 }
|
|
146
|
|
147 n = lwasm_alloc(sizeof(lwasm_expr_stack_node_t));
|
|
148 n -> next = NULL;
|
|
149 n -> prev = s -> tail;
|
|
150 n -> term = lwasm_expr_term_dup(t);
|
|
151
|
|
152 if (s -> head)
|
|
153 {
|
|
154 s -> tail -> next = n;
|
|
155 s -> tail = n;
|
|
156 }
|
|
157 else
|
|
158 {
|
|
159 s -> head = n;
|
|
160 s -> tail = n;
|
|
161 }
|
|
162 }
|
|
163
|
|
164 lwasm_expr_term_t *lwasm_expr_stack_pop(lwasm_expr_stack_t *s)
|
|
165 {
|
|
166 lwasm_expr_term_t *t;
|
|
167 lwasm_expr_stack_node_t *n;
|
|
168
|
|
169 if (!(s -> tail))
|
|
170 return NULL;
|
|
171
|
|
172 n = s -> tail;
|
|
173 s -> tail = n -> prev;
|
|
174 if (!(n -> prev))
|
|
175 {
|
|
176 s -> head = NULL;
|
|
177 }
|
|
178
|
|
179 t = n -> term;
|
|
180 n -> term = NULL;
|
|
181
|
|
182 lwasm_free(n);
|
|
183
|
|
184 return t;
|
|
185 }
|
|
186
|
|
187 // the following two functions are co-routines which actually parse
|
|
188 // an infix expression onto the expression stack, each returns -1
|
|
189 // if an error is encountered
|
|
190
|
|
191 /*
|
|
192 parse a term and push it onto the stack
|
|
193
|
|
194 this function handles unary prefix operators (-, +, .not., .com.)
|
|
195 as well as ()
|
|
196 */
|
|
197 int lwasm_expr_parse_term(lwasm_expr_stack_t *s, const char **p)
|
|
198 {
|
|
199 lwasm_expr_term_t *t;
|
|
200 debug_message(2, "Expression string %s", *p);
|
|
201
|
|
202 eval_next:
|
|
203 if (!**p || isspace(**p) || **p == ')' || **p == ']')
|
|
204 return -1;
|
|
205 if (**p == '(')
|
|
206 {
|
|
207 debug_message(3, "Starting paren");
|
|
208 (*p)++;
|
|
209 lwasm_expr_parse_expr(s, p, 0);
|
|
210 if (**p != ')')
|
|
211 return -1;
|
|
212 (*p)++;
|
|
213 return 0;
|
|
214 }
|
|
215
|
|
216 if (**p == '+')
|
|
217 {
|
|
218 debug_message(3, "Unary +");
|
|
219 (*p)++;
|
|
220 goto eval_next;
|
|
221 }
|
|
222
|
|
223 if (**p == '-')
|
|
224 {
|
|
225 // parse expression following "-"
|
|
226 (*p)++;
|
|
227 if (lwasm_expr_parse_expr(s, p, 200) < 0)
|
|
228 return -1;
|
|
229 t = lwasm_expr_term_create_oper(LWASM_OPER_NEG);
|
|
230 lwasm_expr_stack_push(s, t);
|
|
231 lwasm_expr_term_free(t);
|
|
232 return 0;
|
|
233 }
|
|
234
|
|
235 if (**p == '^' || **p == '~')
|
|
236 {
|
|
237 // parse expression following "^"
|
|
238 (*p)++;
|
|
239 if (lwasm_expr_parse_expr(s, p, 200) < 0)
|
|
240 return -1;
|
|
241 t = lwasm_expr_term_create_oper(LWASM_OPER_COM);
|
|
242 lwasm_expr_stack_push(s, t);
|
|
243 lwasm_expr_term_free(t);
|
|
244 return 0;
|
|
245 }
|
|
246
|
|
247 /*
|
|
248 we have an actual term here so evaluate it
|
|
249
|
|
250 it could be one of the following:
|
|
251
|
|
252 1. a decimal constant
|
|
253 2. a hexadecimal constant
|
|
254 3. an octal constant
|
|
255 4. a binary constant
|
|
256 5. a symbol reference
|
|
257 6. the "current" instruction address (*)
|
|
258 7. the "current" data address (.)
|
|
259 8. a "back reference" (<)
|
|
260 9. a "forward reference" (>)
|
|
261
|
|
262 items 6 through 9 are stored as symbol references
|
|
263
|
|
264 (a . followed by a . or a alpha char or number is a symbol)
|
|
265 */
|
|
266 if (**p == '*'
|
|
267 || (
|
|
268 **p == '.'
|
|
269 && (*p)[1] != '.'
|
|
270 && !((*p)[1] >= 'A' && (*p)[1] <= 'Z')
|
|
271 && !((*p)[1] >= 'a' && (*p)[1] <= 'z')
|
|
272 && !((*p)[1] >= '0' && (*p)[1] <= '9')
|
|
273 )
|
|
274 || **p == '<'
|
|
275 || **p == '>')
|
|
276 {
|
|
277 char tstr[2];
|
|
278 tstr[0] = **p;
|
|
279 tstr[1] = '\0';
|
|
280 t = lwasm_expr_term_create_sym(tstr);
|
|
281 lwasm_expr_stack_push(s, t);
|
|
282 lwasm_expr_term_free(t);
|
|
283 (*p)++;
|
|
284 return 0;
|
|
285 }
|
|
286
|
|
287 /*
|
|
288 - a symbol will be a string of characters introduced by a letter, ".",
|
|
289 "_" but NOT a number OR it may start with a digit if it contains a $
|
|
290 - a decimal constant will consist of only digits, optionally prefixed
|
|
291 with "&"
|
|
292 - a binary constant will consist of only 0s and 1s either prefixed with %
|
|
293 or suffixed with "B"
|
|
294 - a hex constant will consist of 0-9A-F either prefixed with $ or
|
|
295 suffixed with "H"; a hex number starting with A-F must be prefixed
|
|
296 with $ or start with 0 and end with H
|
|
297 - an octal constant will consist of 0-7 either prefixed with @ or
|
|
298 suffixed with "O" or "Q"
|
|
299 - an ascii constant will be a single character prefixed with a '
|
|
300 - a double ascii constant will be two characters prefixed with a "
|
|
301
|
|
302 */
|
|
303 if (**p == '"')
|
|
304 {
|
|
305 // double ascii constant
|
|
306 int val;
|
|
307 (*p)++;
|
|
308 if (!**p)
|
|
309 return -1;
|
|
310 if (!*((*p)+1))
|
|
311 return -1;
|
|
312 val = **p << 8 | *((*p) + 1);
|
|
313 (*p) += 2;
|
|
314 t = lwasm_expr_term_create_int(val);
|
|
315 lwasm_expr_stack_push(s, t);
|
|
316 lwasm_expr_term_free(t);
|
|
317 return 0;
|
|
318 }
|
|
319 else if (**p == '\'')
|
|
320 {
|
|
321 // single ascii constant
|
|
322 int val;
|
|
323 (*p)++;
|
|
324 debug_message(3, "Single ascii character constant '%c'", **p);
|
|
325 if (!**p)
|
|
326 return -1;
|
|
327 val = **p;
|
|
328 (*p)++;
|
|
329 t = lwasm_expr_term_create_int(val);
|
|
330 lwasm_expr_stack_push(s, t);
|
|
331 lwasm_expr_term_free(t);
|
|
332 return 0;
|
|
333 }
|
|
334 else if (**p == '&')
|
|
335 {
|
|
336 // decimal constant
|
|
337 int val = 0;
|
|
338
|
|
339 (*p)++;
|
|
340 while (**p && strchr("0123456789", **p))
|
|
341 {
|
|
342 val = val * 10 + (**p - '0');
|
|
343 (*p)++;
|
|
344 }
|
|
345 t = lwasm_expr_term_create_int(val);
|
|
346 lwasm_expr_stack_push(s, t);
|
|
347 lwasm_expr_term_free(t);
|
|
348 return 0;
|
|
349 }
|
|
350 else if (**p == '%')
|
|
351 {
|
|
352 // binary constant
|
|
353 int val = 0;
|
|
354
|
|
355 (*p)++;
|
|
356 while (**p == '0' || **p == '1')
|
|
357 {
|
|
358 val = val * 2 + (**p - '0');
|
|
359 (*p)++;
|
|
360 }
|
|
361 t = lwasm_expr_term_create_int(val);
|
|
362 lwasm_expr_stack_push(s, t);
|
|
363 lwasm_expr_term_free(t);
|
|
364 return 0;
|
|
365 }
|
|
366 else if (**p == '$')
|
|
367 {
|
|
368 // hexadecimal constant
|
|
369 int val = 0, val2;
|
|
370
|
|
371 (*p)++;
|
|
372 debug_message(3, "Found prefix hex constant: %s", *p);
|
|
373 while (**p && strchr("0123456789ABCDEFabcdef", **p))
|
|
374 {
|
|
375 val2 = toupper(**p) - '0';
|
|
376 if (val2 > 9)
|
|
377 val2 -= 7;
|
|
378 debug_message(3, "Got char: %c (%d)", **p, val2);
|
|
379 val = val * 16 + val2;
|
|
380 (*p)++;
|
|
381 }
|
|
382 t = lwasm_expr_term_create_int(val);
|
|
383 lwasm_expr_stack_push(s, t);
|
|
384 lwasm_expr_term_free(t);
|
|
385 return 0;
|
|
386 }
|
|
387 else if (**p == '0' && tolower(*(*p + 1)) == 'x')
|
|
388 {
|
|
389 // "C" style hexadecimal constant
|
|
390 int val = 0, val2;
|
|
391
|
|
392 (*p)+=2;
|
|
393 debug_message(3, "Found \"C\" style prefix hex constant: %s", *p);
|
|
394 while (**p && strchr("0123456789ABCDEFabcdef", **p))
|
|
395 {
|
|
396 val2 = toupper(**p) - '0';
|
|
397 if (val2 > 9)
|
|
398 val2 -= 7;
|
|
399 debug_message(3, "Got char: %c (%d)", **p, val2);
|
|
400 val = val * 16 + val2;
|
|
401 (*p)++;
|
|
402 }
|
|
403 t = lwasm_expr_term_create_int(val);
|
|
404 lwasm_expr_stack_push(s, t);
|
|
405 lwasm_expr_term_free(t);
|
|
406 return 0;
|
|
407 }
|
|
408 // an @ followed by a digit is an octal number
|
|
409 // but if it's followed by anything else, it is a symbol
|
|
410 else if (**p == '@' && isdigit(*(*p + 1)))
|
|
411 {
|
|
412 // octal constant
|
|
413 int val = 0;
|
|
414
|
|
415 (*p)++;
|
|
416 while (**p && strchr("01234567", **p))
|
|
417 {
|
|
418 val = val * 8 + (**p - '0');
|
|
419 (*p)++;
|
|
420 }
|
|
421 t = lwasm_expr_term_create_int(val);
|
|
422 lwasm_expr_stack_push(s, t);
|
|
423 lwasm_expr_term_free(t);
|
|
424 return 0;
|
|
425 }
|
|
426
|
|
427 // symbol or bare decimal or suffix identified constant here
|
|
428
|
|
429 // find the end of a potential symbol
|
|
430 do
|
|
431 {
|
|
432 int l = 0;
|
|
433 char *sb;
|
|
434 int havedol = 0;
|
|
435
|
|
436 // evaluate a symbol here
|
|
437 static const char *symchars = "_.$@?abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
|
|
438 while ((*p)[l] && strchr(symchars, (*p)[l]))
|
|
439 {
|
|
440 if ((*p)[l] == '$')
|
|
441 havedol = 1;
|
|
442 l++;
|
|
443 }
|
|
444 if (l == 0)
|
|
445 return -1;
|
|
446
|
|
447 if (havedol || **p < '0' || **p > '9')
|
|
448 {
|
|
449 // have a symbol here
|
|
450
|
|
451 sb = lwasm_alloc(l + 1);
|
|
452 sb[l] = '\0';
|
|
453 memcpy(sb, *p, l);
|
|
454 t = lwasm_expr_term_create_sym(sb);
|
|
455 lwasm_expr_stack_push(s, t);
|
|
456 lwasm_expr_term_free(t);
|
|
457 (*p) += l;
|
|
458 debug_message(3, "Symbol: '%s'; (%s)", sb, *p);
|
|
459 lwasm_free(sb);
|
|
460 return 0;
|
|
461 }
|
|
462 } while (0);
|
|
463
|
|
464 if (!**p)
|
|
465 return -1;
|
|
466
|
|
467 // evaluate a suffix based constant
|
|
468 {
|
|
469 int decval = 0, binval = 0, hexval = 0, octval = 0;
|
|
470 int valtype = 15; // 1 = bin, 2 = oct, 4 = dec, 8 = hex
|
|
471 int bindone = 0;
|
|
472 int val;
|
|
473 int dval;
|
|
474
|
|
475 while (1)
|
|
476 {
|
|
477 if (!**p || !strchr("0123456789ABCDEFabcdefqhoQHO", **p))
|
|
478 {
|
|
479 // we can legally have bin or decimal here
|
|
480 if (bindone)
|
|
481 {
|
|
482 // we just finished a binary value
|
|
483 val = binval;
|
|
484 break;
|
|
485 }
|
|
486 else if (valtype & 4)
|
|
487 {
|
|
488 // otherwise we must be decimal (if we're still allowed one)
|
|
489 val = decval;
|
|
490 debug_message(3, "End of decimal value");
|
|
491 break;
|
|
492 }
|
|
493 else
|
|
494 {
|
|
495 // bad value
|
|
496 return -1;
|
|
497 }
|
|
498 }
|
|
499
|
|
500 dval = toupper(**p);
|
|
501 (*p)++;
|
|
502
|
|
503 if (bindone)
|
|
504 {
|
|
505 // any characters past "B" means it is not binary
|
|
506 bindone = 0;
|
|
507 valtype &= 14;
|
|
508 }
|
|
509
|
|
510 switch (dval)
|
|
511 {
|
|
512 case 'Q':
|
|
513 case 'O':
|
|
514 if (valtype & 2)
|
|
515 {
|
|
516 val = octval;
|
|
517 valtype = -1;
|
|
518 break;
|
|
519 }
|
|
520 else
|
|
521 {
|
|
522 // not a valid octal value
|
|
523 return -1;
|
|
524 }
|
|
525 /* can't get here */
|
|
526
|
|
527 case 'H':
|
|
528 if (valtype & 8)
|
|
529 {
|
|
530 val = hexval;
|
|
531 valtype = -1;
|
|
532 break;
|
|
533 }
|
|
534 else
|
|
535 {
|
|
536 // not a valid hex number
|
|
537 return -1;
|
|
538 }
|
|
539 /* can't get here */
|
|
540
|
|
541 case 'B':
|
|
542 // this is a bit of a sticky one since B is a legit hex
|
|
543 // digit so this may or may not be the end of the number
|
|
544 // so we fall through to the digit case
|
|
545
|
|
546 if (valtype & 1)
|
|
547 {
|
|
548 // could still be binary
|
|
549 bindone = 1;
|
|
550 valtype = 9; // hex and binary
|
|
551 }
|
|
552 /* fall through intentional */
|
|
553
|
|
554 default:
|
|
555 // digit
|
|
556 dval -= '0';
|
|
557 if (dval > 9)
|
|
558 dval -= 7;
|
|
559 debug_message(3, "Got digit: %d", dval);
|
|
560 // if (dval > 1)
|
|
561 // valtype &= 14;
|
|
562 // if (dval > 7)
|
|
563 // valtype &= 12;
|
|
564 // if (dval > 9)
|
|
565 // valtype &= 8;
|
|
566
|
|
567 if (valtype & 8)
|
|
568 {
|
|
569 hexval = hexval * 16 + dval;
|
|
570 }
|
|
571 if (valtype & 4)
|
|
572 {
|
|
573 if (dval > 9)
|
|
574 valtype &= 11;
|
|
575 else
|
|
576 decval = decval * 10 + dval;
|
|
577 }
|
|
578 if (valtype & 2)
|
|
579 {
|
|
580 if (dval > 7)
|
|
581 valtype &= 13;
|
|
582 else
|
|
583 octval = octval * 8 + dval;
|
|
584 }
|
|
585 if (valtype & 1)
|
|
586 {
|
|
587 if (dval > 1)
|
|
588 valtype &= 14;
|
|
589 else
|
|
590 binval = binval * 2 + dval;
|
|
591 }
|
|
592 }
|
|
593 // break out if we have a return value
|
|
594 if (valtype == -1)
|
|
595 break;
|
|
596 // return if no more valid possibilities!
|
|
597 if (valtype == 0)
|
|
598 return -1;
|
|
599 val = decval; // in case we fall through
|
|
600 }
|
|
601
|
|
602 // we get here when we have a value to return
|
|
603 t = lwasm_expr_term_create_int(val);
|
|
604 lwasm_expr_stack_push(s, t);
|
|
605 lwasm_expr_term_free(t);
|
|
606 return 0;
|
|
607 }
|
|
608 /* can't get here */
|
|
609 }
|
|
610
|
|
611 // parse an expression and push the result onto the stack
|
|
612 // if an operator of lower precedence than the value of "prec" is found,
|
|
613 int lwasm_expr_parse_expr(lwasm_expr_stack_t *s, const char **p, int prec)
|
|
614 {
|
|
615 static const struct operinfo
|
|
616 {
|
|
617 int opernum;
|
|
618 char *operstr;
|
|
619 int operprec;
|
|
620 } operators[] =
|
|
621 {
|
|
622 { LWASM_OPER_PLUS, "+", 100 },
|
|
623 { LWASM_OPER_MINUS, "-", 100 },
|
|
624 { LWASM_OPER_TIMES, "*", 150 },
|
|
625 { LWASM_OPER_DIVIDE, "/", 150 },
|
|
626 { LWASM_OPER_MOD, "%", 150 },
|
|
627 { LWASM_OPER_INTDIV, "\\", 150 },
|
|
628
|
|
629 // boolean AND/OR
|
|
630 { LWASM_OPER_AND, "&&", 25 },
|
|
631 { LWASM_OPER_OR, "||", 25 },
|
|
632
|
|
633 // bitwise ops
|
|
634 { LWASM_OPER_BWAND, "&", 50 },
|
|
635 { LWASM_OPER_BWOR, "|", 50 },
|
|
636
|
|
637 // this collides with the unary complement but shouldn't cause
|
|
638 // any trouble because of operator precedence
|
|
639 { LWASM_OPER_BWXOR, "^", 50 },
|
|
640
|
|
641 { LWASM_OPER_NONE, "", 0 }
|
|
642 };
|
|
643 int opern, i;
|
|
644 lwasm_expr_term_t *operterm;
|
|
645
|
|
646 // return if we are at the end of the expression or a subexpression
|
|
647 if (!**p || isspace(**p) || **p == ')' || **p == ',' || **p == ']')
|
|
648 return 0;
|
|
649
|
|
650 if (lwasm_expr_parse_term(s, p) < 0)
|
|
651 return -1;
|
|
652
|
|
653 eval_next:
|
|
654 if (!**p || isspace(**p) || **p == ')' || **p == ',' || **p == ']')
|
|
655 return 0;
|
|
656
|
|
657 // expecting an operator here
|
|
658 for (opern = 0; operators[opern].opernum != LWASM_OPER_NONE; opern++)
|
|
659 {
|
|
660 for (i = 0; (*p)[i] && operators[opern].operstr[i] && ((*p)[i] == operators[opern].operstr[i]); i++)
|
|
661 /* do nothing */ ;
|
|
662 if (operators[opern].operstr[i] == '\0')
|
|
663 break;
|
|
664 }
|
|
665 if (operators[opern].opernum == LWASM_OPER_NONE)
|
|
666 {
|
|
667 // unrecognized operator
|
|
668 return -1;
|
|
669 }
|
|
670
|
|
671 // the operator number in question is in opern; i is the length of the
|
|
672 // operator string
|
|
673
|
|
674 // logic:
|
|
675 // if the precedence of this operation is <= to the "prec" flag,
|
|
676 // we simply return without advancing the input pointer; the operator
|
|
677 // will be evaluated again in the enclosing function call
|
|
678 if (operators[opern].operprec <= prec)
|
|
679 return 0;
|
|
680
|
|
681 // logic:
|
|
682 // we have a higher precedence operator here so we will advance the
|
|
683 // input pointer to the next term and let the expression evaluator
|
|
684 // loose on it after which time we will push our operator onto the
|
|
685 // stack and then go on with the expression evaluation
|
|
686 (*p) += i; // advance input pointer
|
|
687
|
|
688 // evaluate next expression(s) of higher precedence
|
|
689 if (lwasm_expr_parse_expr(s, p, operators[opern].operprec) < 0)
|
|
690 return -1;
|
|
691
|
|
692 operterm = lwasm_expr_term_create_oper(operators[opern].opernum);
|
|
693 lwasm_expr_stack_push(s, operterm);
|
|
694 lwasm_expr_term_free(operterm);
|
|
695
|
|
696 // return if we are at the end of the expression or a subexpression
|
|
697 if (!**p || isspace(**p) || **p == ')')
|
|
698 return 0;
|
|
699
|
|
700 // continue evaluating
|
|
701 goto eval_next;
|
|
702 }
|
|
703
|
|
704 /*
|
|
705 actually evaluate an expression
|
|
706
|
|
707 This happens in two stages. The first stage merely parses the expression into
|
|
708 a lwasm_expr_stack_t * which is then evaluated as much as possible before the
|
|
709 result is returned.
|
|
710
|
|
711 Returns NULL on a parse error or otherwise invalid expression. *outp will
|
|
712 contain the pointer to the next character after the expression if and only
|
|
713 if there is no error. In the case of an error, *outp is undefined.
|
|
714 */
|
|
715 lwasm_expr_stack_t *lwasm_expr_eval(const char *inp, const char **outp, lwasm_expr_stack_t *(*sfunc)(char *sym, void *state), void *state)
|
|
716 {
|
|
717 lwasm_expr_stack_t *s;
|
|
718 const char *p;
|
|
719 int rval;
|
|
720
|
|
721 // actually parse the expression
|
|
722 p = inp;
|
|
723 s = lwasm_expr_stack_create();
|
|
724
|
|
725 rval = lwasm_expr_parse_expr(s, &p, 0);
|
|
726 if (rval < 0)
|
|
727 goto cleanup_error;
|
|
728
|
|
729 // save end of expression
|
|
730 if (outp)
|
|
731 (*outp) = p;
|
|
732
|
|
733 // return potentially partial expression
|
|
734 if (lwasm_expr_reval(s, sfunc, state) < 0)
|
|
735 goto cleanup_error;
|
|
736
|
|
737 if (lwasm_expr_is_constant(s))
|
|
738 debug_message(3, "Constant expression evaluates to: %d", lwasm_expr_get_value(s));
|
|
739
|
|
740 return s;
|
|
741
|
|
742 cleanup_error:
|
|
743 lwasm_expr_stack_free(s);
|
|
744 return NULL;
|
|
745 }
|
|
746
|
|
747 /*
|
|
748 take an expression stack s and scan for operations that can be completed
|
|
749
|
|
750 return -1 on error, 0 on no error
|
|
751
|
|
752 possible errors are: division by zero or unknown operator
|
|
753
|
|
754 theory of operation:
|
|
755
|
|
756 scan the stack for an operator which has two constants preceding it (binary)
|
|
757 or 1 constant preceding it (unary) and if found, perform the calculation
|
|
758 and replace the operator and its operands with the result
|
|
759
|
|
760 repeat the scan until no futher simplications are found or if there are no
|
|
761 further operators or only a single term remains
|
|
762
|
|
763 */
|
|
764 int lwasm_expr_reval(lwasm_expr_stack_t *s, lwasm_expr_stack_t *(*sfunc)(char *sym, void *state), void *state)
|
|
765 {
|
|
766 lwasm_expr_stack_node_t *n, *n2;
|
|
767 lwasm_expr_stack_t *ss;
|
|
768 int c;
|
|
769
|
|
770 next_iter_sym:
|
|
771 // resolve symbols
|
|
772 // symbols that do not resolve to an expression are left alone
|
|
773 for (c = 0, n = s -> head; n; n = n -> next)
|
|
774 {
|
|
775 if (n -> term -> term_type == LWASM_TERM_SYM)
|
|
776 {
|
|
777 ss = sfunc(n -> term -> symbol, state);
|
|
778 if (ss)
|
|
779 {
|
|
780 c++;
|
|
781 // splice in the result stack
|
|
782 if (n -> prev)
|
|
783 {
|
|
784 n -> prev -> next = ss -> head;
|
|
785 }
|
|
786 else
|
|
787 {
|
|
788 s -> head = ss -> head;
|
|
789 }
|
|
790 ss -> head -> prev = n -> prev;
|
|
791 ss -> tail -> next = n -> next;
|
|
792 if (n -> next)
|
|
793 {
|
|
794 n -> next -> prev = ss -> tail;
|
|
795 }
|
|
796 else
|
|
797 {
|
|
798 s -> tail = ss -> tail;
|
|
799 }
|
|
800 lwasm_expr_term_free(n -> term);
|
|
801 lwasm_free(n);
|
|
802 n = ss -> tail;
|
|
803
|
|
804 ss -> head = NULL;
|
|
805 ss -> tail = NULL;
|
|
806 lwasm_expr_stack_free(ss);
|
|
807 }
|
|
808 }
|
|
809 }
|
|
810 if (c)
|
|
811 goto next_iter_sym;
|
|
812
|
|
813 next_iter:
|
|
814 // a single term
|
|
815 if (s -> head == s -> tail)
|
|
816 return 0;
|
|
817
|
|
818 // search for an operator
|
|
819 for (n = s -> head; n; n = n -> next)
|
|
820 {
|
|
821 if (n -> term -> term_type == LWASM_TERM_OPER)
|
|
822 {
|
|
823 if (n -> term -> value == LWASM_OPER_NEG
|
|
824 || n -> term -> value == LWASM_OPER_COM
|
|
825 )
|
|
826 {
|
|
827 // unary operator
|
|
828 if (n -> prev && n -> prev -> term -> term_type == LWASM_TERM_INT)
|
|
829 {
|
|
830 // a unary operator we can resolve
|
|
831 // we do the op then remove the term "n" is pointing at
|
|
832 if (n -> term -> value == LWASM_OPER_NEG)
|
|
833 {
|
|
834 n -> prev -> term -> value = -(n -> prev -> term -> value);
|
|
835 }
|
|
836 else if (n -> term -> value == LWASM_OPER_COM)
|
|
837 {
|
|
838 n -> prev -> term -> value = ~(n -> prev -> term -> value);
|
|
839 }
|
|
840 n -> prev -> next = n -> next;
|
|
841 if (n -> next)
|
|
842 n -> next -> prev = n -> prev;
|
|
843 else
|
|
844 s -> tail = n -> prev;
|
|
845
|
|
846 lwasm_expr_term_free(n -> term);
|
|
847 lwasm_free(n);
|
|
848 break;
|
|
849 }
|
|
850 }
|
|
851 else
|
|
852 {
|
|
853 // binary operator
|
|
854 if (n -> prev && n -> prev -> prev && n -> prev -> term -> term_type == LWASM_TERM_INT && n -> prev -> prev -> term -> term_type == LWASM_TERM_INT)
|
|
855 {
|
|
856 // a binary operator we can resolve
|
|
857 switch (n -> term -> value)
|
|
858 {
|
|
859 case LWASM_OPER_PLUS:
|
|
860 n -> prev -> prev -> term -> value += n -> prev -> term -> value;
|
|
861 break;
|
|
862
|
|
863 case LWASM_OPER_MINUS:
|
|
864 n -> prev -> prev -> term -> value -= n -> prev -> term -> value;
|
|
865 break;
|
|
866
|
|
867 case LWASM_OPER_TIMES:
|
|
868 n -> prev -> prev -> term -> value *= n -> prev -> term -> value;
|
|
869 break;
|
|
870
|
|
871 case LWASM_OPER_DIVIDE:
|
|
872 if (n -> prev -> term -> value == 0)
|
|
873 return -1;
|
|
874 n -> prev -> prev -> term -> value /= n -> prev -> term -> value;
|
|
875 break;
|
|
876
|
|
877 case LWASM_OPER_MOD:
|
|
878 if (n -> prev -> term -> value == 0)
|
|
879 return -1;
|
|
880 n -> prev -> prev -> term -> value %= n -> prev -> term -> value;
|
|
881 break;
|
|
882
|
|
883 case LWASM_OPER_INTDIV:
|
|
884 if (n -> prev -> term -> value == 0)
|
|
885 return -1;
|
|
886 n -> prev -> prev -> term -> value /= n -> prev -> term -> value;
|
|
887 break;
|
|
888
|
|
889 case LWASM_OPER_BWAND:
|
|
890 n -> prev -> prev -> term -> value &= n -> prev -> term -> value;
|
|
891 break;
|
|
892
|
|
893 case LWASM_OPER_BWOR:
|
|
894 n -> prev -> prev -> term -> value |= n -> prev -> term -> value;
|
|
895 break;
|
|
896
|
|
897 case LWASM_OPER_BWXOR:
|
|
898 n -> prev -> prev -> term -> value ^= n -> prev -> term -> value;
|
|
899 break;
|
|
900
|
|
901 case LWASM_OPER_AND:
|
|
902 n -> prev -> prev -> term -> value = (n -> prev -> term -> value && n -> prev -> prev -> term -> value) ? 1 : 0;
|
|
903 break;
|
|
904
|
|
905 case LWASM_OPER_OR:
|
|
906 n -> prev -> prev -> term -> value = (n -> prev -> term -> value || n -> prev -> prev -> term -> value) ? 1 : 0;
|
|
907 break;
|
|
908
|
|
909 default:
|
|
910 // return error if unknown operator!
|
|
911 return -1;
|
|
912 }
|
|
913
|
|
914 // now remove the two unneeded entries from the stack
|
|
915 n -> prev -> prev -> next = n -> next;
|
|
916 if (n -> next)
|
|
917 n -> next -> prev = n -> prev -> prev;
|
|
918 else
|
|
919 s -> tail = n -> prev -> prev;
|
|
920
|
|
921 lwasm_expr_term_free(n -> term);
|
|
922 lwasm_expr_term_free(n -> prev -> term);
|
|
923 lwasm_free(n -> prev);
|
|
924 lwasm_free(n);
|
|
925 break;
|
|
926 }
|
|
927 }
|
|
928 }
|
|
929 }
|
|
930 // note for the terminally confused about dynamic memory and pointers:
|
|
931 // n will not be NULL even after the lwasm_free calls above so
|
|
932 // this test will still work (n will be a dangling pointer)
|
|
933 // (n will only be NULL if we didn't find any operators to simplify)
|
|
934 if (n)
|
|
935 goto next_iter;
|
|
936
|
|
937 return 0;
|
|
938 }
|